







# CORHA Project: Radiation screening of COTS components and verification of COTS RHA approach - Part 2

<u>S. Gerardin<sup>1</sup></u>, M. Bagatin<sup>1</sup>, A. Paccagnella<sup>1</sup>, P. Beck<sup>2</sup>, C. Tscherne<sup>2</sup>, M. Wind<sup>2</sup>, M. Poizat<sup>3</sup>



<sup>1</sup> DEI - University of Padova, Italy
 <sup>2</sup> Seibersdorf Labor GmbH, Austria
 <sup>3</sup> ESA - ESTEC, The Netherlands





#### Non-volatile Memories for Small Satellites

- Experimental Results
  - Total Ionizing Dose
    - Lot-to-lot Variability Study
  - Single Event Effects:
    - Heavy lons
    - Protons
- Radiation Hardness Assurance for COTS used on lowcost missions
  - Proposed flow and guidelines







- Microcontrollers and FPGAs used in small satellites require low-footprint nonvolatile memories (NVM) for configuration, code, and data storage purposes
- SPI and NOR interfaces

|                          | FUĴĨTSU               |                       | PRESS<br>IN TOMORROW                    | Micron                                                |
|--------------------------|-----------------------|-----------------------|-----------------------------------------|-------------------------------------------------------|
|                          | MB85RS256TY           | CY15B102QN            | CY14V101PS                              | MT28EW128ABA                                          |
| Part Type                | SPI Ferroelectric RAM | SPI Ferroelectric RAM | SPI Non-volatile SRAM (SONOS)           | Parallel NOR Flash<br>Memory ( <b>Floating Gate</b> ) |
| Manufacturer             | Fujitsu Semiconductor | Cypress               | Cypress                                 | Micron Technology                                     |
| Size                     | 256 kbit              | 2 Mbit                | 1 Mbit                                  | 128 Mbit                                              |
| Operating<br>Voltage     | 1.8 to 3.6 V          | 1.8 to 3.6 V          | Core 2.7 to 3.6 V; I/O<br>1.71 to 2.0 V | Core 2.7 to 3.6 V; I/O<br>1.65 to 3.6 V               |
| Operating<br>Temperature | -40°C to 125°C        | -40°C to 125°C        | -40°C to 85°C                           | -40°C to 85°C                                         |
| Package                  | SOP8                  | SOIC8                 | SOIC16                                  | TSOP56                                                |





#### Cell Technologies



- Storage concept: Inject or remove charge between the control gate and the channel
- Charge storage element: floating polysilicon gate (FG), charge-trap layer (e.g. Semiconductor Oxide Nitride Oxide Semiconductor - SONOS)
- Radiation can remove stored charge

#### Polarized by an electric field



- Storage concept: Ferroelectric materials are able to retain the polarization of the dipoles which occurs when an electric field is applied after the field has been removed
- Cells are not very sensitive to radiation, peripheral circuitry can be, but voltages are low





## TID Facility and Experiments

- Co<sup>60</sup> source at Seibersdorf Laboratories
- Dose rate: 2.4 krad(Si)/hour
- Steps: 2, 5, 10, 15, 50, 100 krad(Si)
- 24+ hours annealing at room temperature + 1 week at 100°C
- Devices
  - 5 samples under static bias (memories were idle, but selected, ready to operate)
  - 5 unbiased samples (grounded pins)
  - References for each experimental conditions
- Parametric degradation measured and failure modes identified up to 100 krad(Si)
- Three different lots were tested for CY15, one for the others











- No issues with cells (FRAM)
- Minor parametric (power consumption) between 15 and 50 krad(Si) in all the biased samples
- Functional failures between 50 and 100 krad(Si) in all the biased samples







#### Ferroelectric memory: CY15B102QN



- No issues with cells (FRAM)
- Minor parametric (standby power) between 15 and 50 krad(Si). Lot-to-lot Variability.
- Functional failures between 50 and 100 krad(Si) in biased samples in all three lots
- Recovery of some samples after 100°C annealing.
- All other parameters do not show significant variations across lots



- > No issues with functionality of volatile (SRAM) or non-volatile (SONOS) storage
- Tolerable power consumption degradation in the peripheral circuitry above 50 krad(Si)
- Some sample-to-sample variability
- Current marginally increases also in unbiased devices, but stays well below max spec





- No issues with functionality of cells (Floating Gate)
- Increase in standby current, both in biased and unbiased components
- Some sample-to-sample variability
- Current increases also in unbiased devices over Max limit, but < than in biased devices</p>

# SEE Tests

Test setup: custom motherboard + daughterboard with a power analyzer

- SEU: powered off for non-volatile cells, standby for volatile
- SEFI: a loop of (erase)/program/read (SEFI full) or read (SEFI read)
- SEL: biased and heated in idle ready-to-operate conditions
- All memories were tested with heavy ions at HIF, Louvain-la-Neuve



| Heavy-ion | Range [µm Si] | LET [MeV/(mg/cm²)] |
|-----------|---------------|--------------------|
| Ne        | 3.3           | 202                |
| Ar        | 9.9           | 114                |
| Kr        | 32.4          | 94.2               |
| Хе        | 73.1          | 62.5               |

The two most sensitive devices have been tested with protons: CY14 nvSRAM, CY15 FeRAM at TIFPA Trento



| p energy<br>[MeV] | Range [mm Si] | LET [MeV/(mg/cm²)]     |
|-------------------|---------------|------------------------|
| 70                | 22            | 8.016·10 <sup>-3</sup> |
| 119               | 56            | 5.370·10 <sup>-3</sup> |
| 169               | 104           | 4.220·10 <sup>-3</sup> |
| 202               | 141           | 3.617·10 <sup>-3</sup> |





#### MB85: SEE with Heavy lons

- FRAM technology
- Cells are immune up to > 60 MeV·mg<sup>-1</sup>·cm<sup>2</sup>
- SEFI σ considerably lower than in the Cypress devices
- No SEL @ 85°C









Simone Gerardin



### CY15: SEE with Heavy Ions and Protons

- FRAM technology
- Cells are immune up to > 60 MeV·mg<sup>-1</sup>·cm<sup>2</sup>
- Cross sections for SEFIs and SEL (at room temperature) are very close
- Hard to tell if there is a spike in the current, when the device is operating and dynamic current dominates, but it is likely
- Events (SEFI and SEL, no SEU) with protons qualitatively consistent with heavy-ion sensitivity









### CY14: SEE with Heavy Ions and Protons

- nvSRAM (SRAM+SONOS)
- NV cells are immune up to 62.5 MeV·mg<sup>-1</sup>·cm<sup>2</sup> (higher LET will be tested)
- > SRAM cells are sensitive
- SEL (RT), SEFI σ are similar (again, hard to tell if there is a spike in SEFI events, but it is likely)
- Events (SEU, SEFI and SEL) with protons consistent with heavy-ion sensitivity (large error bars and significant dose for SEFIs)











#### MT28: SEE with Heavy lons

- > NOR Flash
- Cells sensitive at 62.50 MeV·mg<sup>-</sup>
  <sup>1</sup>·cm<sup>2</sup>, σ < 10<sup>-10</sup> cm<sup>2</sup>
- Destructive events with Xe (inability to program and erase). Likely charge pump failure, not related to TID









Simone Gerardin





#### Total Ionizing Dose

- All memory cells, regardless of the storage technology, behave well
- Increase in the supply current in various conditions and to various extents is the most common issue at doses below 50 krad(Si)
- Functional failures can appear above 15 krad(Si)
- In general, the samples show a consistent behavior even between lots in the case of the CY15
- Small differences are visible in stand-by current for the biased components
- Single Event Effects
  - All tested NV cells are pretty hard with respect to SEU
    - data loss only with Micron NOR Flash with Heavy Ions (HI) at an LET of 62.5 (small  $\sigma$ )
  - CY14 nvSRAM has expected SEU sensitivity in the SRAM cells (both HI and p)
  - Significant and consistent SEL/SEFI  $\sigma$  in Cypress devices (both HI and p)
  - Destructive events in the Micron NOR Flash with HI at an LET of 62.5 MeV · mg<sup>-1</sup> · cm<sup>2</sup>







- Non-volatile Memories for Small Satellites
- Experimental Results
  - Total Ionizing Dose
    - Lot-to-lot Variability Study
  - Single Event Effects:
    - Heavy lons
    - Protons
- Radiation Hardness Assurance for COTS used on lowcost missions
  - Proposed flow and guidelines





- The goal of this work package was to define a radiation hardness assurance (RHA) methodology compatible with the requirements of small missions
  - Use of COTS components
  - Restricted budget
- We incorporated ideas from the literature and lessons learned during the project and proposed a simplified flow
- Use of available information to the maximum extent
- Only some highlights will be presented







- 1. Radiation Environment
- 2. Criticality Analysis
- 3. Evaluation of radiation performance of selected parts
  - a) Use of Existing Radiation Data
  - b) Use of Information on Manufacturing Technology
  - c) Radiation Testing
    - i. Board-level Testing
- 4. Part Suitability Assessment





- Mission-ending failures should be addressed first
- > The following radiation effects should be always considered

### Destructive SEE

- Single Event Latchup, Single Event Gate Rupture or Single Event Burnout
- Less likely to induce mission-ending critical failures, but still important to consider are TID and DD-induced failures
- Considerations should also be given to the effects causing single event functional interrupts (SEFIs)
  - no physical damage to the devices, but loss of information which may seriously put a mission at risk
- SEUs can usually be mitigated (and should)



3.b Use of Information on Manufacturing Technology

- When no test data are available and testing is not a possibility, an analysis of the manufacturing technology should be performed
- Concerning Total Ionizing Dose

UNIVERSITÀ DEGLI STUDI DI PADOVA

- Scaling (gate oxide thickness reduction, replacement of LOCOS with STI), has led to an increase in the tolerance of devices with small feature size operating at low voltage
- In general, the larger the supply voltage, the more likely the device is to suffer from total ionizing dose effects
  - Digital devices are more aggressively scaled than their analog counterparts, but variability is large especially among COTS
  - Devices with a low supply voltage may have internal circuitry working at higher voltages (e.g. non-volatile devices)



### Technology and TID Sensitivity



- Results obtained by the CORHA project
  - Functional failures tend to occur at relatively high doses in all tested components,
  - Parametric failures may occur at doses as low as 2 krad in some analog components
- Failure doses as low as 1 krad can be found; below 1 krad, the probability of failure due to total dose is very very small
- Moderate parametric failures can be tolerated, to be addressed on a case-by-case basis
- Based on results collected during the project and the scientific literature, guidelines relating technologies to expected TID tolerance have been proposed

| Categ<br>ry  | jo Device              | Para<br>Failu<br>(k | imetric<br>re Level<br>.rad) | Func<br>Failure<br>(kr | tional<br>ELevel<br>ad) | TI<br>Pass<br>(kra | D<br>Level<br>ad) | Comment                                                                                                         |
|--------------|------------------------|---------------------|------------------------------|------------------------|-------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
|              |                        | biased              | unbiase<br>d                 | biased                 | unbiased                | biased             | unbiase<br>d      |                                                                                                                 |
| NVM          | MT28EW128AB<br>A       | 50                  | 50                           |                        |                         | 15                 | 15                | Standby current increases<br>over spec.                                                                         |
| NVM          | CY14V101PS             | 50                  | 100                          |                        |                         | 15                 | 50                | Supply current increases<br>overs spec.                                                                         |
| NVM          | MB85RS256TY            | 50                  |                              | 100                    |                         | 15                 | 100               |                                                                                                                 |
| NVM          | CY15B102QN             | 15                  |                              | 50                     |                         | 10                 | 100               | Standby current increases<br>over spec, then functional<br>failure.                                             |
| μC           | STM32F103RG<br>T6      |                     |                              | 54.1                   | 100.1                   | 25.1               | 54.1              |                                                                                                                 |
| μC           | STM32L152RET<br>6      |                     |                              | 100.1                  | 168h,<br>100°C          | 25.1               | 24h, RT           |                                                                                                                 |
| OpAn         | np LT1499HS#PBF<br>-ND | 10.0                | 10.0                         | > 100                  | > 100                   | 2.0                | 2.0               |                                                                                                                 |
| OpAn         | PBF-ND                 | 10.3                | 10.3                         | > 100                  | > 100                   | 2.0                | 2.0               |                                                                                                                 |
| OpAn         | np MAX44248ASA+<br>T   | > 100               | > 100                        | > 100                  | > 100                   | 100                | 100               |                                                                                                                 |
| Analo<br>Mux | g CD74HC4051M<br>96    | 11.0                | 54.0                         | > 100                  | > 100                   | 2.0                | 25.0              | Truth Table Test fails after<br>24h, RT anneal and<br>recovers after 168h,<br>elevated temperature<br>annealing |
| Analo<br>Mux | g ADG5408TCPZ-<br>EP   | 2.0                 | 11.0                         | > 100                  | > 100                   | 0.0                | 2.0               | Truth Table Test fails at 2<br>krad for the biased and at<br>100 krad for the unbiased<br>device                |
| ADC          | ADC128S102CI<br>MTX    | 11.0                | 11.0                         | > 100                  | > 100                   | 2.0                | 2.0               |                                                                                                                 |

#### Summary of CORHA TID Results



From Dodd et al. IEEE TNS 2008





- The evolution of SEE with scaling is much less straightforward
  - Latchup increases with T and V (strong dependence on doping levels and geometry)
  - LET<sub>th</sub> for SEU decreases and MBU increases
  - SEFIs become more and more complex and difficult to diagnose
- CORHA results
  - Wide variety of observed behaviors
  - SEL is a common threat
  - SEUs are common in volatile storage
- Based on the results collected during the project and the scientific literature, guidelines relating SEE to technologies have been proposed

| Category            | Device                 | SEL | Comments                                                     |
|---------------------|------------------------|-----|--------------------------------------------------------------|
| Non-volatile Memory | MT28EW128ABA           | Yes | Small probability                                            |
| Non-volatile SRAM   | CY14V101PS             |     | @ room temperature and also with<br>protons                  |
| Non-volatile Memory | MB85RS256TY            | No  |                                                              |
| Non-volatile Memory | CY15B102QN             | Yes | @ room temperature and also with<br>protons                  |
| Microcontroller     | STM32F103RGT6          | No  |                                                              |
| Microcontroller     | STM32L152RET6          | Yes | Intense latching @ Room<br>temperature and also with protons |
| OpAmp               | LT1499HS#PBF-<br>ND    | No  |                                                              |
| OpAmp               | LTC6240HVCS#PB<br>F-ND | No  |                                                              |
| Analog Mux          | CD74HC4051M96          | No  |                                                              |
| Analog Mux          | ADG5408TCPZ-EP         | No  | A single latch up was observed @<br>room temperature         |
| ADC                 | ADC128S102CIMT<br>X    | Yes |                                                              |



#### Summary of CORHA SEE Results





| Expected Dose              | Recommendation                                                                                      |
|----------------------------|-----------------------------------------------------------------------------------------------------|
| < 1krad <sub>(Si)</sub>    | No testing                                                                                          |
| 1 – 5 krad <sub>(Si)</sub> | Decision for testing at component, board or equipment level shall be made by the mission engineers. |
| > 5krad <sub>(Si)</sub>    | Perform testing at component, board or equipment level.                                             |

- > These recommendations are valid for low-cost missions only
  - There are always risks associated with no testing



### 3.c SEE Testing Guidelines

- > SEE testing should be focused on destructive events
  - a single high-LET heavy ion may be used to save beam time
  - Implement mitigation for soft events, but... unexpected SEFIs can always show up, especially in complex COTS (a simple ECC or CRC might be ineffective against them)
- Proton sensitivity can be derived from heavy-ion sensitivity for electronics with a threshold LET<sub>th</sub> smaller than 15 MeV·cm<sup>2</sup> ·mg<sup>-1</sup>
  - Analytically (PROFIT, SIMPA, FOM) or by means of simulation, thus reducing the amount of testing required.
  - CORHA data show that the predictions can be underestimated or overestimated by a more than one order of magnitude.
  - Models developed many years ago for SEU:
    - Fewer materials in the semiconductor industry
    - Larger feature size





Examples of overestimation and underestimation of proton effects by PROFIT and SIMPA collected during CORHA





#### 3.c SEE Testing Guidelines

| Scenario              | Criticality | Recommendation                                     |
|-----------------------|-------------|----------------------------------------------------|
|                       | Level       |                                                    |
| LEO, low altitude     | Low         | No testing                                         |
| and small inclination |             |                                                    |
|                       | High        | Perform at least board-level testing with protons  |
| LEO, MEO, GEO         | Low         | Perform at least heavy-ion testing for destructive |
|                       |             | events (single high LET) in critical components    |
|                       | High        | Full component level testing with heavy ions and   |
|                       |             | optionally protons. If proton testing is waived,   |
|                       |             | consider sufficient margin on modeling results.    |

#### General SEE testing recommendations







- A radiation hardness assurance methodology suitable for low-budget missions, focused on COTS, has been proposed, leveraging the scientific literature and the experimental data collected in the frame of the CORHA project
- The proposed methodology is based on a standard flow, with suggestions and guidelines to reduce cost with the least possible increase in risk:
  - **Guidelines for exploiting** in the best possible way **existing data or technological information** about the EEE reduction of tested parts with increased design margin;
  - **Simplified SEE testing** targeting only destructive events, assuming mitigation for soft events is implemented;
  - Board-level testing
- It must be noted, however, that the complexity of modern devices which can feature hundreds or even thousands of operating modes, demands for more extensive testing rather than less

