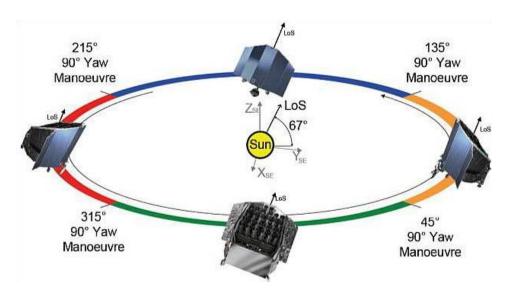

PREVIOUSLY ON EXOPLANETS

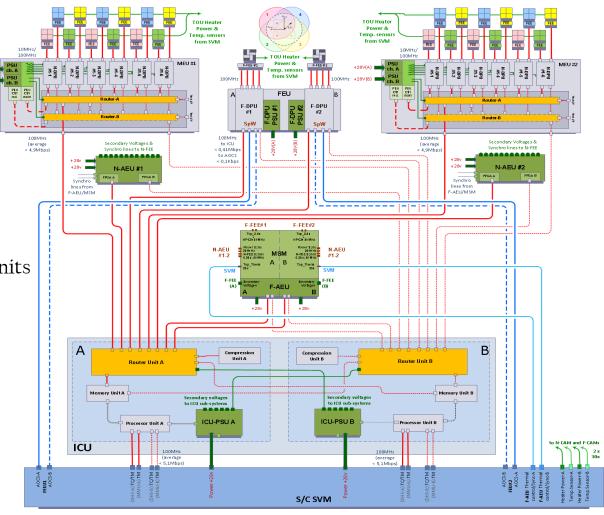


THE PLATO MISSION

- ESA Cosmic Vision 3 Mission (M3)
- Science Goals
 - Detect terrestrial exoplanets in the habitable zone of solar-type stars
 - Characterize their bulk properties
- Orbit: L2 Halo
- Quaterly 90 degree roll
- Launch: end-of 2026
- Down-link budget:
 435 Gbit/day ~ 5.15 Mbit/s

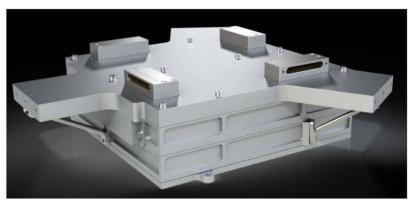
ATO 2.0 substantia and confined on the Tomite an

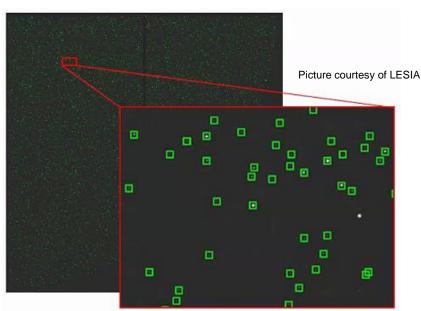
THE CAMERA(S)


- 24 + 2 Cameras are mounted on a single optical bench
 - 4 Camera Groups
 - 6 Normal Cameras per Group
- Refractor
 - 4 Full frame CCDs by e2v
 - 4510x4510 pixel each
- 25s (nominal) cadence
 - Staggered readout
 - One CCD every 6.25s
- Using multiple cameras increases
 - Signal to noise ratio
 - Robustness
 - Field-of-view

THE PLATO INSTRUMENT

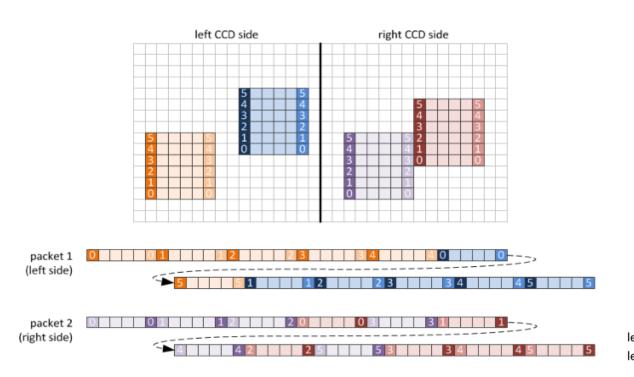
- Camera Subsystem
 - 24 Normal cameras
 - 2 Fast cameras
 - 2 Normal AEUs
 - 1 Fast AEUs
- DPS Subsystem
 - 12 Normal data processing units
 - 2 Fast data processing units
 - Routers and PSUs
 - Instrument Control Unit

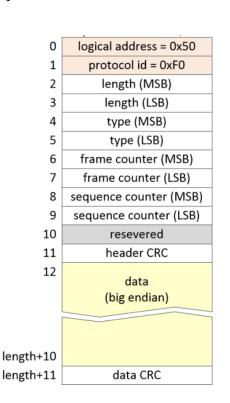

STATUS AND SCHEDULE


- Critical Milestone successfully passed
- All Payload Unit CDRs successfully passed
- Payload QR on-going
- On-board software CDRs successfully passed or in progress
- Telescope FM serial manufacturing & calibration has started
- S/C CDR currently planned for Q1 2024
- Ground-segment design review currently planned for Q1 2024
- Launch end-of 2026

THE FRONT-END ELECTRONICS

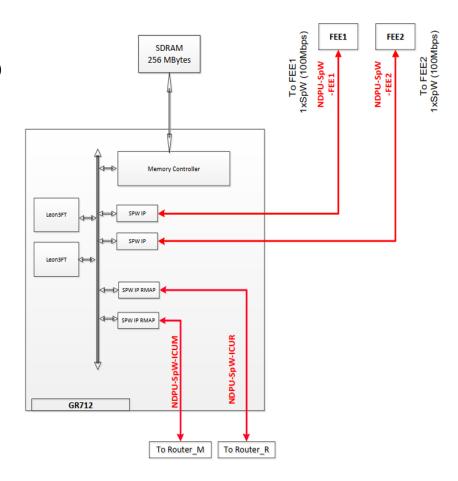
- Analog Part
 - CCD Management
 - High-Precision HKs
- Digital-Part
 - FPGA
 - Buffer
 - SpW Transceivers
 - One SpW link per N-FEE
 - DPU \rightarrow FEE = 10Mhz
 - FEE \rightarrow DPU = 100MHz
 - Windowing
 - One CCD ~38MByte
 - 38MB/6.25s ~50Mbps
 - Up to 300.000 windows per camera
 - Up to 10% of the whole CCD can be selected





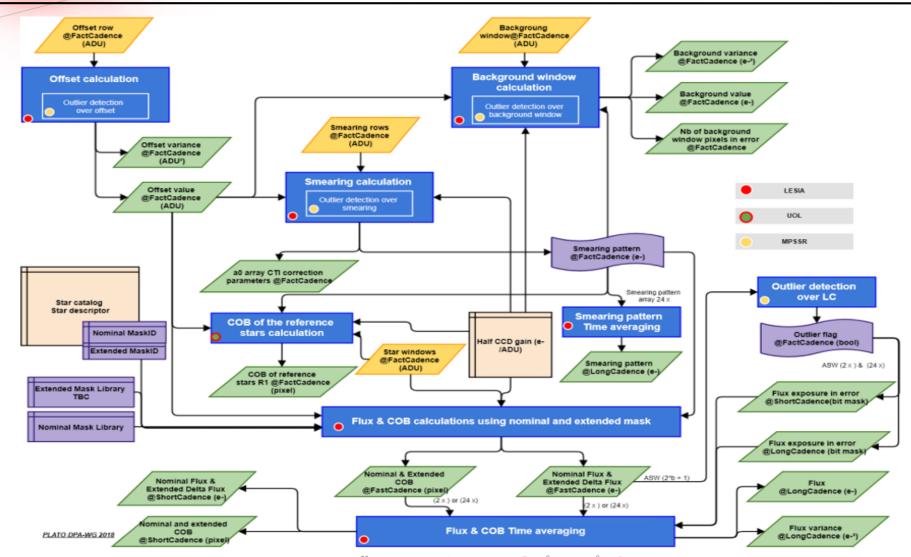
DATA REDUCTION AT THE SOURCE

- Data that is not produced does not need to be processed
- If production is mandatory (only full CCD lines can be digitized) it is most efficient to discard not needed data immediately



NORMAL DATA PROCESSING UNITS

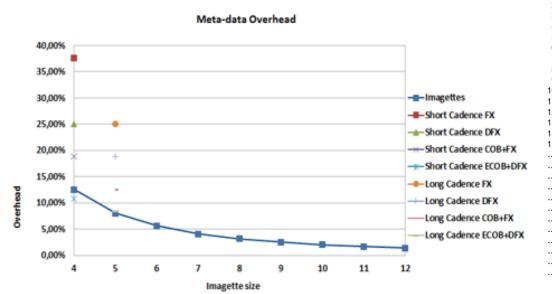
- Functions
 - Camera management (2 Cams per DPU)
 - Science / Data reduction
- Hardware
 - GR712RC Dual-core Leon3 CPU
 - 256 MB SDRAM
 - No Non-volatile memory
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (based on LESIA proprietary lib)


PLATO DATA PRODUCTS

- Number of science targets is larger then down-link capacity
- Data reduction by the DPUs is needed
- Data products
 - Imagettes
 - Flux (Lightcurves)
 - Centroid
 - Background
 - Offset
 - Smearing

Number (#) of data products	UC#1	UC#2	UC#3	UC#4
, , ,	[# / Cam]	[# / Cam]	[# / Cam]	[# / Cam]
24 x N-Camera / 12 x N-DPU				
Light (50 s)	31350	31350	31350	31350
Light, Centroid/COB (50 s)	3700	3700	3700	3700
Light (600 s)	73500	48605	46855	50355
Background (25 s)	3000	3000	3000	3000
Imagettes [36pixel] (25 s)	11000	20650	22400	18900
Offset (25 s)	8	8	8	8
Smearing (600 s)	18040	18040	18040	18040
Science HK (6,25 s / 25 s)	56	56	56	56
2 x F-Cameras / 2 x F-DPU				
Imagettes [36pixel] (2,5 s)	325	325	325	325
Background (2,5 s)	100	100	100	100
Offset (2,5 s)	8	8	8	8
Science HK (2,5 s / 25 s)	40	40	40	40
FGS data (2,5 s)	40	40	40	40
TM data budget (ICU to SVM) [Gbit/day]	297	435	435	435
Margin vs max. daily TM volume [%]	46	0	0	0

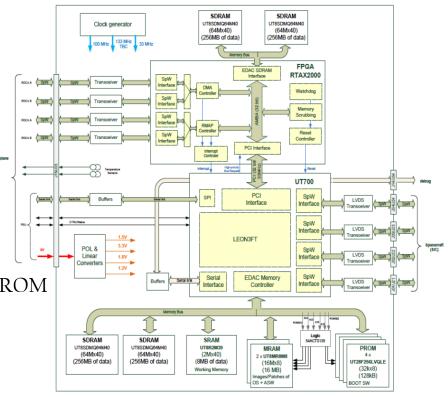
ON-BOARD DATA PROCESSING


European Data Handling & Data Processing Conference for Space 2023 03.10.2023, Juan-Les-Pins, France

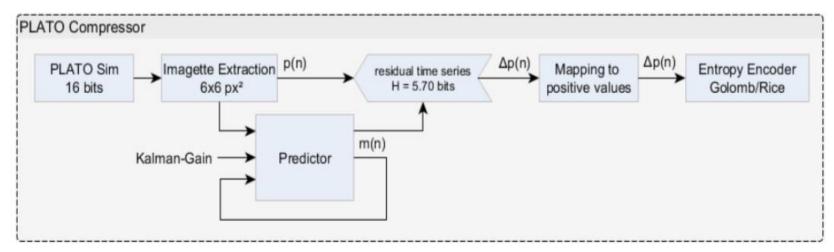
SCIENCE DATA FORMAT

- In order to optimize compression efficiency and throughput
 - The Science packets contain nearly no meta-data
 - Each science packet is referred-to as "Collection"
 - Each "Collection" is accompanied by a "Companion packet"

specifying the Collection's contents



INSTRUMENT CONTROL UNIT


- Functions
 - Instrument management
 - Booting DPUs
 - SpW network management
 - Further data reduction (Compression)
 - Payload level FDIR & Autonomy
- Hardware
 - UT700 single core Leon3 CPU
 - FPGA Compression Board
 - 2 x 512 MB SDRAM + 16 MB MRAM + PROM
- Software
 - ASW RTEMS 4.8 (Qualifiable version) / C implementation
 - BSW Bare-metal C super-loop

LOSSLESS COMPRESSION

- Golomb-code with custom pre-processing implemented in FPGA
 - Difference between data and data model (running average) is taken
 - The remainder is basically noise
 - Overlap and interleave is applied (0, -1, 1, -2, 2, -3, etc.)
 - Result an array of small integers (around 5 bits)
 - These will be encoded using a Golomb-code
 - Model is updated
 - Model is reset after 8 cadences

FAST DATA-PROCESSING UNITS

- Functions
 - Camera management
 - Fine guidance
 - Science
- Hardware
 - MDPA single core Leon2 CPU
 - Acceleration FPGA
 - 8MB SRAM + 128MB DRAM
 - PROM
- Software
 - RTEMS 4.8 (Qualifiable version)
 - Mixed C/C++ implementation (C++ only for GNC algorithms)

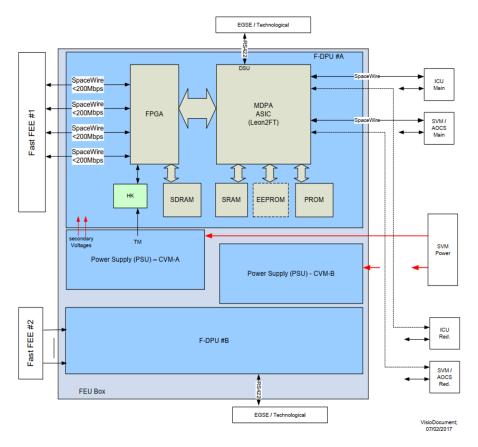
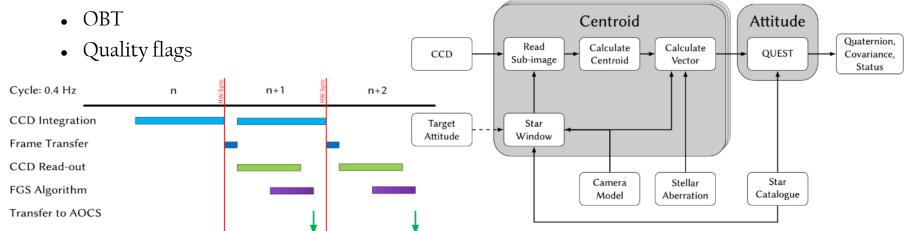


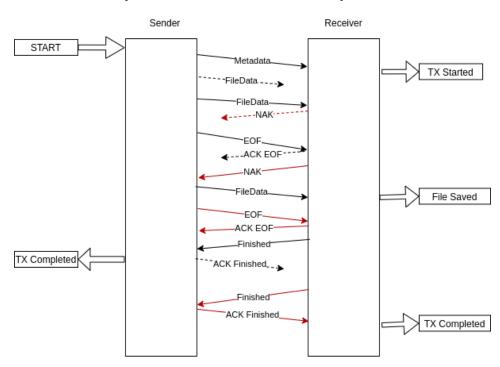
Figure 2-1: FEU Block Diagram


FINE-GUIDANCE

- S/C attitude sensors are not precise enough
- Fast-cameras will be used as high-precision star trackers
- Performance
 - Max. latency 3750ms (relative to middle of integration) => 300ms for SW
 - Noise Equivalent Angle (NEA) 25 milliarcseconds (x/y)
- FGS packet every 2.5s to S/C

Figure 5-26: Fine Guidance Data Transfer Timeline

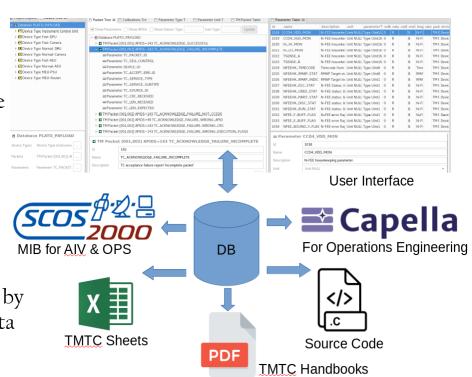
• Quaternion


ON-BOARD DATA STORAGE

- SVM Solid-state mass-memory (SSMM)
 - ICU sends data to dedicated SpW Logical-Addresses
 - A SpW Logical-Address is allocated to a specific on-board file
 - The SSMM manages the opening and closing of files
 - The allocation of data-products to files is configurable
 - The PLATO Payload will use up to 35 SSMM files

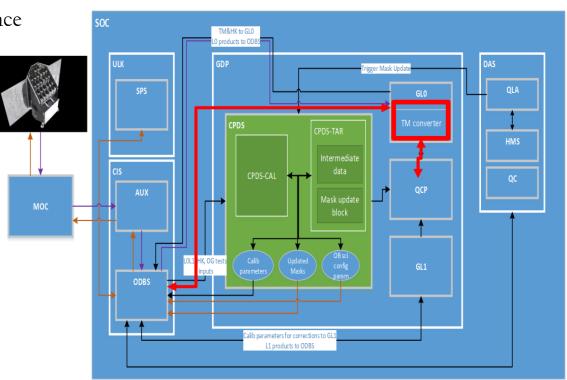
FILE-BASED OPERATIONS

- During a GS communication window
 - The mission operations center requests the download of files from SVM SSMM
 - The data integrity and completeness is assured by the CCSDS File-delivery Protocol
 - The downloaded files can be deleted after complete reception



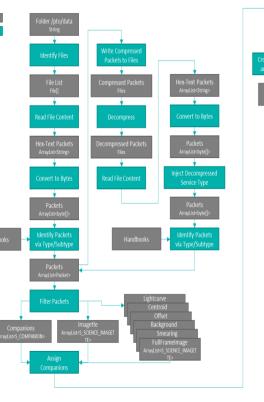
Dotted lines represent lost PDUs Red lines represent retransmissions or retrasmissions requests

MISSION OPERATIONS


- PLATO will be operated by ESOC with EGS-CC
- The Payload SRDB exchange format is still S2K MIB (ICD v7.1)
- The Payload Flight-Operational Procedure exchange format is MOIS XML
- The FOPs are generated with the DLR
 Tool PROTOS and will be validated by
 running them on GECCOS and the EQM
 bench at DLR
- MIB and FOPs will be ingested/converted by ESOC into the corresponding EGS-CC data formats

SCIENCE OPERATIONS CENTER

- PLATO science operations center will be ESAC
- SOC is responsible for
- Receiving and decoding science files from MOC
- Running the TM Decoder
- Running the L0/L1 Pipeline
- Running the target programming tool



SCIENCE TM DECODING

The TM Decoder is provided by the PLATO Calibrations and

Operations team (PCOT)

- The TM decoder is
- Re-assembling the compression chunks
- Decompressing the chunks
- Re-assembling the science data-products using the companion packets
- Will be deployed as horizontally scalable Docker containers

THE WHOLE PLATO TEAM SAYS: THANK YOU!

