

GR765: SPARC and RISC-V Multiprocessor System-on-Chip

Guillem Cabo Pitarch

2023-10-06

Agenda

- **01** Background: GR740
- **02** GR765 next generation SoC
- 03 Test chip samples
- 04 Software

GR740

LEON4FT Quad-core SoC

GR740 - Quad-Core LEON4FT Processor

Value proposition

- · High performance, wide range of interfaces
- <u>SPARC V8</u> compliant, **Rad**iation-hard and Fault Tolerant
- Designed as ESA's Next Generation Microprocessor, NGMP
- LEON Technology <u>re-use</u> of Development and Software ecosystem
- Low risk, off-the-shelf product, <u>QML Q/V</u>
- Excellent performance/watt ratio
 - Very low power, < 3 W (core typical)
 - Performance 1700 DMIPS (1000 MIPS)

STANDARD MICROCIRCUIT DRAWING	PREPARED BY Phu H. Nguyen CHECKED BY Phu H. Nguyen	DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 https://www.dla.mil/LandandMaritime		
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE	APPROVED BY Muhammad A. Akbar	MICROCIRCUIT, PROCESSOR, DIGITAL, CMOS, RADIATION HARDENED, QUAD CORE LEON4		
	DRAWING APPROVAL DATE 22-04-18	SPARC V8 PROCESSOR, MONOLITHIC SILICON		
AMSC N/A	REVISION LEVEL	SIZE A	CAGE CODE 67268	5962-21204
		SHEET	1 OF 51	

DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

GR740 - Quad-Core LEON4FT Processor

What can be improved?

- · Higher-pin count package enabling more interfaces simultaneously
 - No sacrifices needed
- Customers require:
 - Higher performance memory interface (DDR3/4)
 - NAND Flash memory controller for storage
 - High Speed Serial Links
 - Higher processing performance
- SBCs based on the GR740 typically require a companion FPGA to provide

flexibility for custom interfaces and processing

AMSC N/A	REVISION LEVEL	SIZE A SHEET	CAGE CODE 67268	5962-21204
AND AGENCIES OF THE DEPARTMENT OF DEFENSE	DRAWING APPROVAL DATE 22-04-18	SPARC V8 PROCESSOR, MONOLITHIC SILICON		
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS	APPROVED BY Muhammad A. Akbar	MICROCIRCUIT, PROCESSOR, DIGITAL, CMOS, RADIATION HARDENED, QUAD CORE LEON4		
MICROCIRCUIT DRAWING	CHECKED BY Phu H. Nguyen		https://www.dla.m	il/LandandMaritime
STANDARD	PREPARED BY Phu H. Nguyen	DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		

5962-E021-21

SPAR

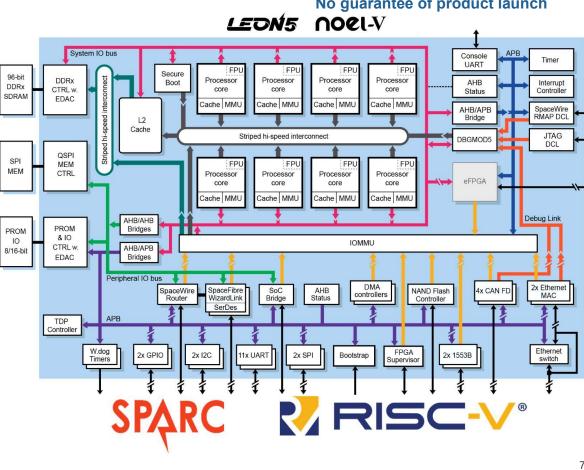
Compliant

DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

GR765

Next-Generation SoC


6

GR765 – Octa-Core Processor

Baseline Features

- Fault-tolerant octa-core architecture
 - LEON5FT SPARC V8 or NOEL-V RV64GCH
 - Dedicated FPU and MMU, 64 KiB per core L1 cache, connected via multi-port interconnect
- 1 GHz processor frequency 26k DMIPS •
- 2+ MiB L2 cache, 512-bit cache line, 4-ways ٠
- **DMA** controllers •
- DDR2/3/4 interface with dual x8 device correction . capability
- 8/16-bit PROM/IO interface .
- (Q)SPI and NAND memory controller interfaces •
- Secure Element, providing Secure (authenticated) • boot (TBD)
- eFPGA ~30k LUT (TBD) ٠
- High-pin count LGA1752 package allows reduction ٠ of pin sharing
- Target technology: STM 28nm FDSOI •

In development No guarantee of product launch

Instruction Set Architectures

Why RISC-V?

- <u>Hardware and software potential</u> for future space applications: A new class of processors requires a modern architecture
- Enabling new technologies by standardization
 - Hypervisor support
 - Vector extension, ...
- Growing base of 3rd party ecosystem:
 - <u>Toolsets</u>
 - Libraries, engines etc.
- Attractive to <u>talent</u> entering the space domain
- Influx of know-how by talent entering the space domain

Why SPARC?

- Existing base of space <u>proven</u> HW and SW designs
- <u>Mature ecosystem</u> for today's space applications, e.g. qualified OS
- Accumulated development <u>know-</u> <u>how</u> in the industry
- Software <u>backward compatible</u> with existing LEON devices

SPĄRC

GR765 provides **RISC-V** and **SPARC**

- Both architectures are needed by the industry
- Faster time-to-market for RISC-V while continuing SPARC – ease transition between the two architectures
- <u>Minimal silicon overhead</u> sharing of resources on chip. User selects CPU (LEON5FT or NOEL-VFT), device cannot operate with both at the same time.

LEON5 – SPARC Processor

- · 32-bit SPARC V8 processor core
- Multi-core support (AMP & SMP)
- Improved performance over LEON3 & LEON4
 - In-order dual-issue pipeline
- Improved fault tolerance (FT) from SEUs
- Improved FPU: Floating Point Unit with denormalized number support
- Leverage existing software: maintain binary compatibility with LEON3 and LEON4

Performance:

• Coremark* : 4.52 CoreMark/MHz (-03,-funroll-all-loops -finline-functions -finline-limit=1000)

* Results generated using BCC 2.0.7 toolchain

NOEL-V – RISC-V Processor

RISC-V processor core

- 64-bit (RV64I) implementation in GR765
- Superscalar in order pipeline
- Leverages RISC-V software and tool support in the commercial domain together with same level of software support provided by Gaisler as for the LEON line of processors

GR765 feature set:

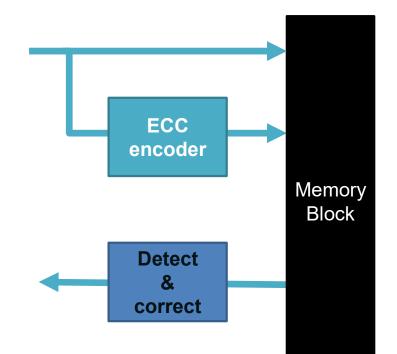
- RISC-V RV64GCH
- Can run complex OS
- OS-A Embedded RISC-V platform specification
 - Set of features and default configurations that assures compatibility with rich-OS platforms

NOQL-V RISC-V[®]

Performance:

- Comparable to ARM Cortex A53
- CoreMark*/MHz: 4.41**

* GCC9.3.0 20200312 (RTEMS 5, RSB 5 (c53866c98fb2), Newlib 7947581


-g -march=rv64ima -mabi=lp64 -B /gsl/data/products/noelv/rtems-noel-1.0.3//kernel/riscv-rtems5/noel64ima/lib --specs bsp_specs -qrtems -lrtemsdefaultconfig -O2 -funroll-all-loops -funswitch-loops -fgcse-after-reload -fpredictive-commoning -mtune=sifive-7-series -finline-functions -fipa-cp-clone -falign-functions=8 -falign-loops=8 -falign-jumps=8 --param max-inline-insns-auto=20

** Using "#define ee_u32 int32_t" in core_portme.h, as is common for 64 bit RISC-V.

NOEL-V & LEON5 Fault tolerance overview

- No need for lock-step or redundant CPUs
- **Protection of memory blocks** (in caches & register file) using error correcting codes
- Protected with a full **SECDED** code with custom scheme:
 - Transparent <u>single event</u> correction
 - Guaranteed <u>detection also of 3-bit and 4-bit adjacent</u>
 <u>bit errors</u>
- Hardware scrubber built into the processor to avoid error build-up
 - Automatic scrubbing routines, minimized overhead
- Error counters and diagnostic interfaces
 - Monitor and inject errors

LEON5 & NOEL-V IP availability

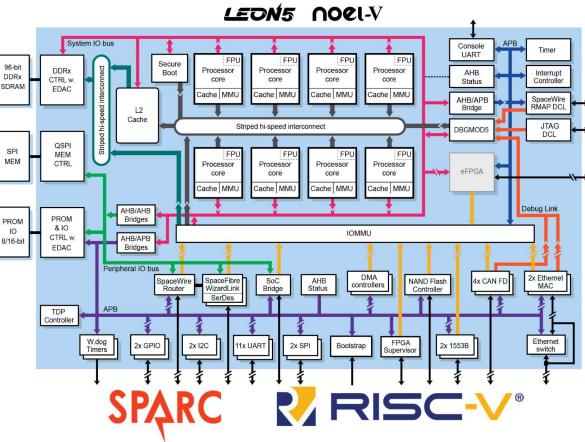
- LEON5 and NOEL-V are available as part of the GRLIB IP library
- FPGA bitstreams for evaluation boards of multiple vendors (Xilinx, Lattice, Microchip,...)
- <u>Debug monitor</u> and software <u>toolchains</u> (Bare-C, RTEMS, Linux, …) are also freely available

www.gaisler.com

LEON-XCKU

PUBLIC

12

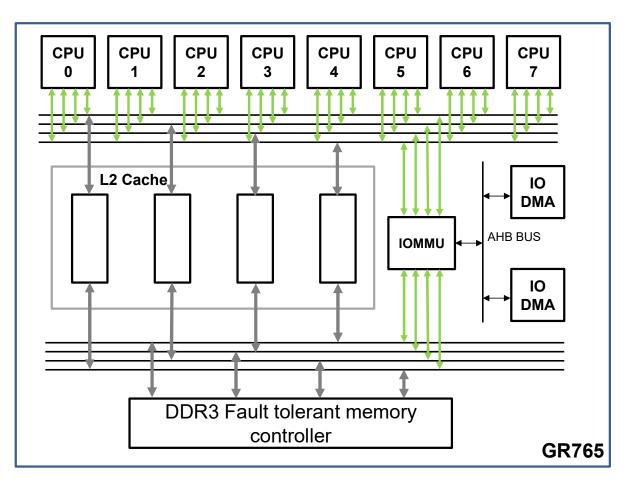

NOEL-XCKU

FRONTGRADE

GR765 – Performance, Fault-Tolerance, and TSP

Improvements

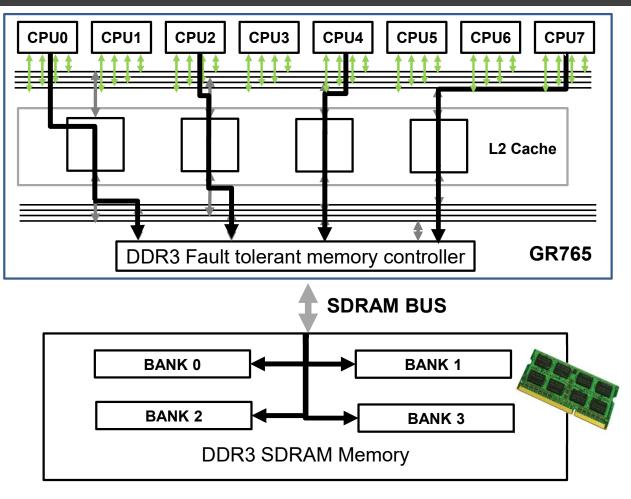
- Higher <u>performance</u> and <u>improved power</u> consumption.
- Fault-tolerance: Processor L1 protected with a full <u>SECDED</u> code with custom scheme: Deliver correct data locally without causing memory access. Hardware <u>scrubbers</u> within <u>processor</u> <u>pipeline, L1, L2 and DRAM controller</u>.
- **Timing isolation features:** processors can use a <u>subset of the multiple</u> connections to Level-2 cache and memory controller.
- Improved functional separation features


In development No guarantee of product launch

GR765 – Improved interconnect

Striped interconnect:

- <u>4x AHB 2.0 buses</u>
- · All cores connected to all stripes
- Support for <u>larger physical address space</u>, up to 48-bits
- Encoding to stripe based on (configurable) bits in physical address
 - Default setting: map stripes to cache lines
 - line 0 -> stripe 0, line 1 -> stripe 1, ...
 - Encoding to stripe address space in L1 cache backend
 - Achieve isolation by changing a stripe selection bit to a higher logical address bit
 - separate stripes 0-1 from 2-3
 - Consistent addressing from L1 backend to DDR controller
- Fully isolated L2 cache pipelines dedicated to each stripe

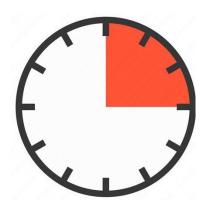


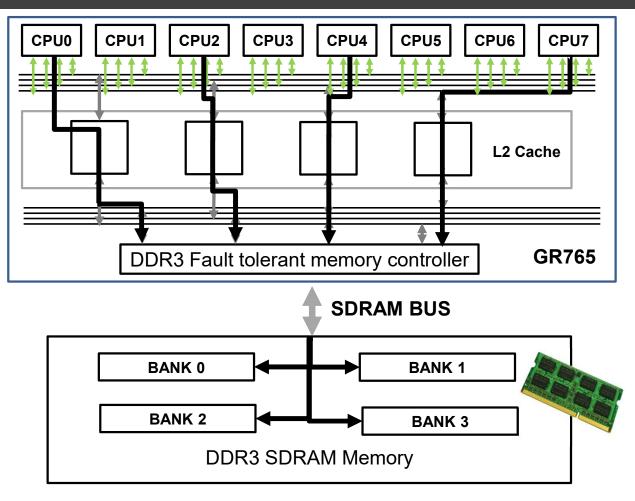
GR765 – Improved interconnect

The striped interconnect allows for concurrent accesses to different memory banks

- Minimizing interference
- Improving performance
- Maintaining L1 cache coherency

An L2 cache hit causes absolutely no interference!

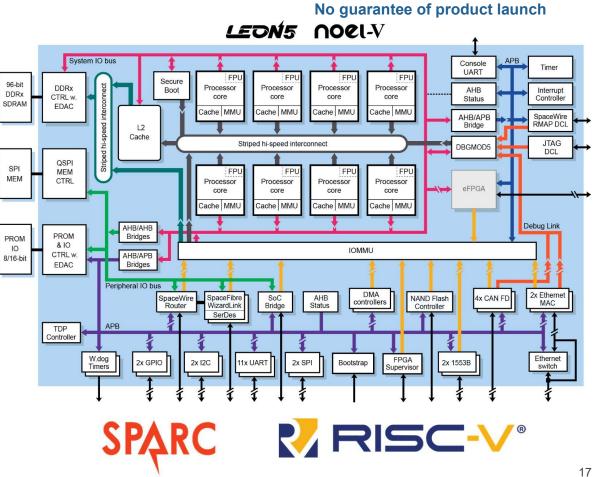



GR765 – Improved interconnect

Time-slotted mode:

- Accesses to each memory bank are only allowed 1/4 of the time
- Zero interference between the stripes
- Performance cost

• ...under development

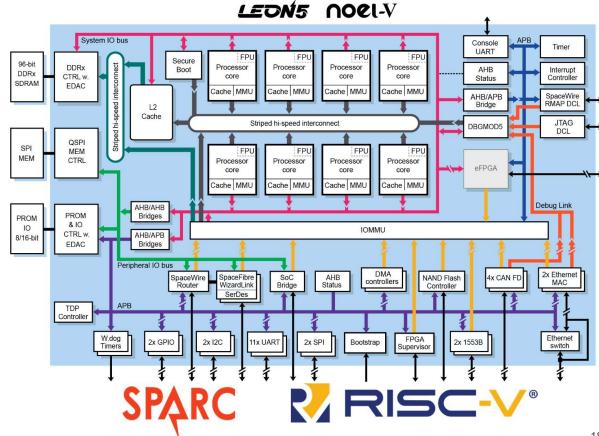


In development

GR765 – Functional separation

NOEL-V H extension + AIA + IOPMP/MMU

- Allows to group IO units together with guest VMs and to separate VMs+IO from each other.
- Allows for HW distribution of interrupts to guests ٠ in hypervisor.
- Same IOMMU implementation for both SPARC and ٠ **RISC-V** modes
- LEON5FT hypervisor mode (in development)
- Evaluating use of an additional layer of protection (in addition to processor/IO MMU and PMP) to limit which devices are allowed to access memory-mapped interfaces.
- Additional layer may be necessary in at least LEON5 mode - and will in that case also be available in RISC-V mode.

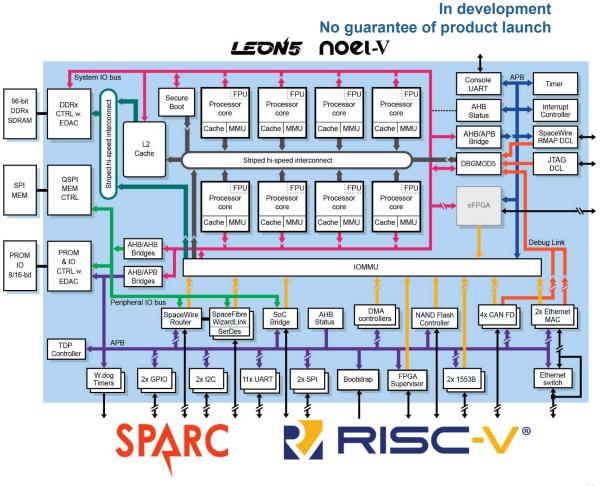


GR765 – Interfaces

Interfaces – SPARC and RISC-V mode

- SpaceFibre x8 lanes 6.25 Gbit/s + WizardLink support
- **12-port** SpaceWire router with +4 internal ports
- 2x 10/100/1000 Mbit Ethernet w. TTEthernet capable switch
- 2x MIL-STD-1553B
- 4x CAN FD
- 2x I2C interface, 12 x UART, 2x SPI controller
- SoC Bridge interface
- FPGA Supervisor interface
- Timers & Watchdog, GPIO ports
- Debug links:
 - Dedicated: JTAG and SpaceWire
 - CAN, SpFi, Ethernet

In development No guarantee of product launch



GR765 – Under evaluation

Under evaluation

- eFPGA fabric
- <u>Secure element</u>
- NAND Flash NV-DDRx_support and support for TLC
- <u>Real-time instruction trace</u> support
 - RISC-V E-Trace encoder implemented
 - evaluating Nexus
- DDR4 support

LEON5FT and NOEL-V FT 28nm

Test Chip on STM FDSOI28 GEO P2

LEON5 and NOEL-V silicon proven on STM 28nm GEO P2

Rad-hard demonstrator with LEON5FT SPARC V8 32-bit processor and NOEL-V RISC-V 64-bit processor

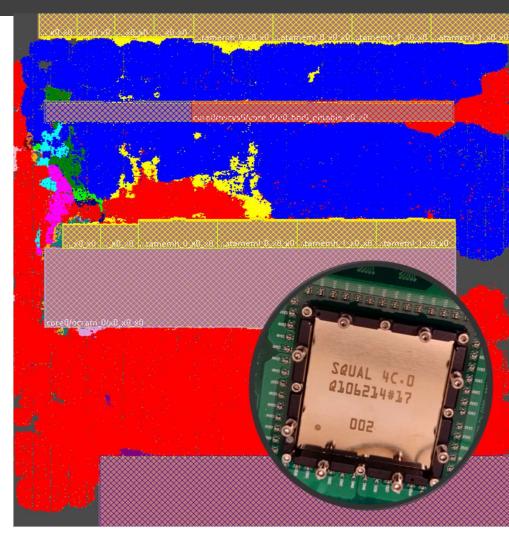
chain, fab in Crolles (FR)

Manufactured using European supply

- ST 28nm FDSOI GEO P2 technology
- Specialized design with LEON5 and NOEL-V sharing resources, consumes less than 1 mm²
- Proves implementation on target
 technology
- Technology hardness and processor core fault tolerance features demonstrated through SEE test campaign
- Collaboration between STM and Gaisler R&D teams

Performance attained

LEON5/NOEL-V:


٠

- Typical corner: <u>1 GHz / 800* MHz</u>
- Worst-case corner: 600 / 500* MHz

Schedule

- Test chips available at Gaisler
- Performed SEE characterization
- Test chip will be included in <u>GOMX-5</u>
 LEO in-orbit experiment

* Following this tape-out, NOEL-V has been further optimized and future implementations are expected to match LEON5 operating frequency.

SQUAL4C SEE results summary

Mean Time Between Events (MTBE)

Orbit**	Functional errors***
LEO (700 Km, incl. 98.7°)	28,500 years
GEO (36000 Km)	8,640 years

- Estimation from TRAD Omere 5.6
- LEO orbit refers to the GOMX-5 mission

* Not discarded that the events observed are actually test artifacts. Conservative approach taken, i.e., events treated as functional events

** AP8 solar min, Z=1-92, CREME96, Al shielding of 1 g/cm², SEE error rates due to protons not considered (due to the very low proton cross section per bit of the memories, the contribution of proton-induced functional events is less significant in majority of all space orbits)

*** An actual product can be expected to be 20x larger, and therefore the MTBE lower

Weibull parameter	Functional errors
W	6.56
S	0.93
Saturation XS	9.99E-8 cm ² /device
LET threshold	7.64 MeVcm ² /mg

Summary

- No silent data corruption
- Functional error saturation cross-section: 1E-7 cm²/device*
- <u>All detected errors in memories were corrected</u> by the fault-tolerant features of the design (on-chip RAM and L1 caches)
- <u>No Single Event Latch-up (SEL)</u>

Based on the results obtained, one can estimate the SEU tolerance for an actual product to be harder than the radiation-hardened GR740 SoC

Software support

Next-Generation SoC

Software

- Complete ecosystem
- A combination of Gaisler and 3rd party software

Tool chains, Operating systems and compilers

- Bare-C
- Linux
- RTEMS
- VxWorks
- Zephyr

Hypervisors

- XtratuM/XNG (FentISS)
- PikeOS (SYSGO)
- Xvisor

Boot loaders

- MKPROM2
- GRBOOT Flight
 bootloader

Tools

- GRMON3
- TSIM3

ESA activity: GR765/LEON5 Software Ecosystem

- Started in March 2023
- TSIM Simulator extensions for GR765:
 - Same accuracy profile as for TSIM3-GR740
 - Focus on modelling new architecture:
 - LEON5 processor model with dual-issue
 - AHB stripes and L2-caches
 - DDR2/3 controller
 - GR765 TSIM configuration
- GRBOOT for GR765 (gaisler.com/grboot)
 - Flight boot loader software today available for GR740, GR712RC, UT700
 - Software architectural extensions for GR765
 - GR765 BSP and configuration
 - Other improvements also for GR740 and GR712RC
- GR765 Linux support
 - Analysis support for wider address space than 32-bit
 - Basic low-level drivers

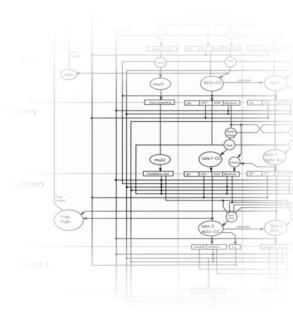
(Other GR765 RISC-V/NOEL-V and LEON5 software support handled as part of other projects)

TSIMB

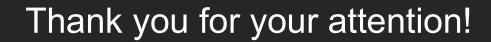
Visit the <u>webpage</u> for more information

Conclusion

Next-Generation SoC



GR765 Conclusion


- The GR765 development builds on the successful <u>GR740</u> quad-core LEON4FT component, adding numerous enhancements.
- The GR765 is an octa-core processor. Users can enable either eight NOEL-VFT RISC-V 64-bit processor cores or eight LEON5FT cores.
- GR765 supports DDR2/3/4 SDRAM, high-speed serial link controllers and several other extensions.
- GR765-XX (prototype) components in 2025
- FPGA bitfiles to evaluate the GR765 available for GR-CPCIS-XCKU and GR-VPX-XCKU development boards
- The GR765 development puts emphasis on <u>computational performance</u>, <u>power efficiency</u>, <u>and support</u> <u>for mixed criticality</u> application.

Progress reported via www.gaisler.com/GR765

LEDI

 \mathbf{P}

0