

Design of an Edge Computing Space Board through the example of a Reference Design based on Quad ARM[®] Cortex[®]-A72 processing module

Thomas Porchez

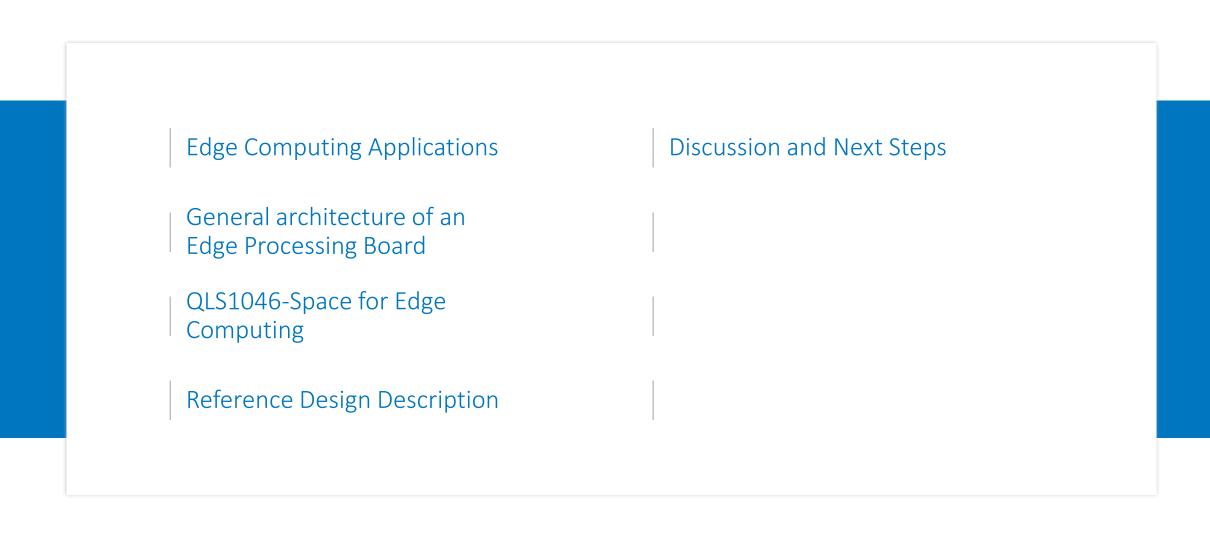
Application Engineer – Processing Solutions

EDHPC – October 2023

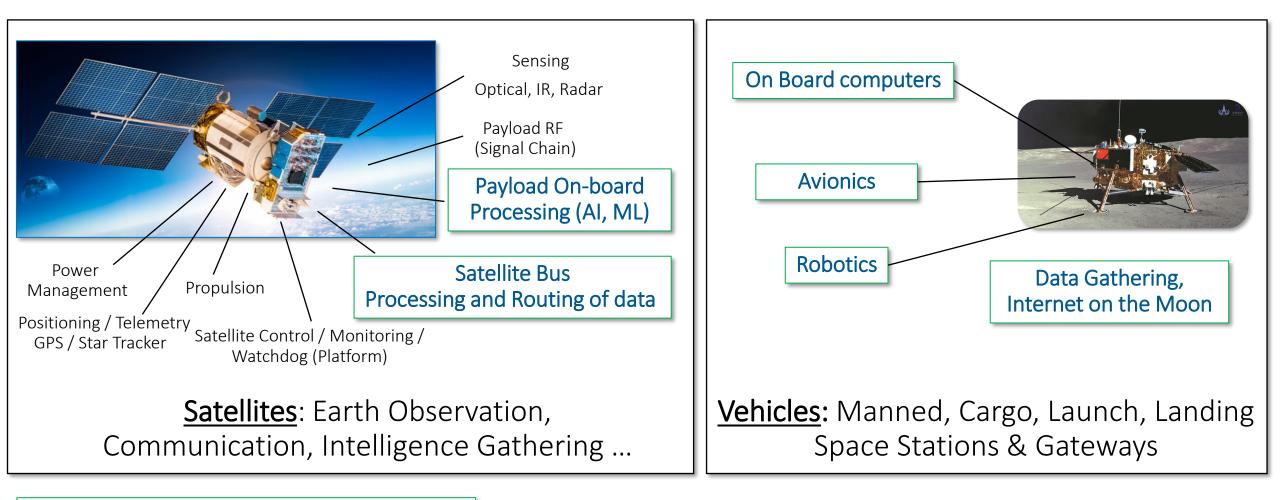
Wilfrid Bertrand

System Development Engineer – Processing Solutions

Teledyne e2v - Grenoble - France

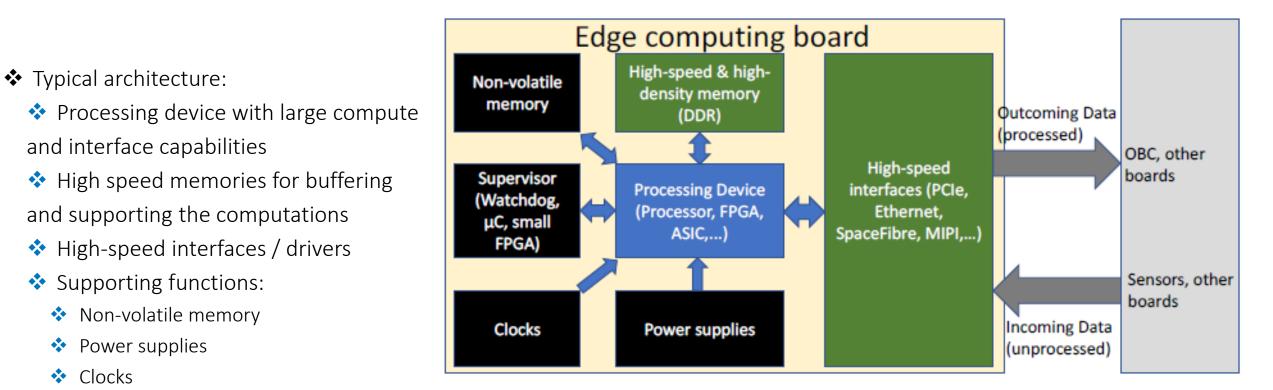


Teledyne Confidential; Commercially Sensitive Business Data


Copyright Teledyne e2v Semiconductors

Agenda

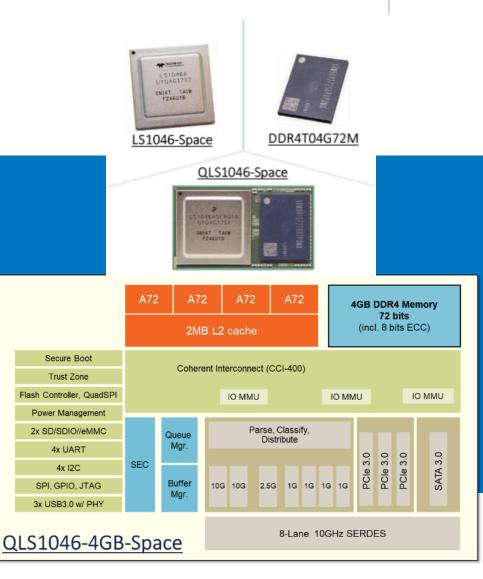
Examples of Edge Computing Applications addressed by Teledyne e2v



Legenda : Addressable with Teledyne e2v Data Processing Solutions

FELEDYNE C2V Everywhere**vou**look

General Architecture of an Edge Processing Board


- "Edge processing" requirements and challenges :
 - Processing the data at the source, i.e. on-board
 - Handle and process large amount of data
 - Different data streams from various sources (sensors other boards)

QLS1046-Space for Edge Computing

- Combination of LS1046-Space & DDR4T04G72 memory
- Heavy computing capabilities in ultra-compact design:
 - Quad-core 64-bit Arm[®] Cortex A72: Up to 30kDMIPS with NEON vector processing units (56GFLOPs)
 - Integrated 4GB x72bit DDR4 memory up to 2.4GT/s rate
 - ✤ 2MB total L2 cache, 1-10GbE, PCIe 3.0, UARTs, SPI, I²C, …
 - Highly compact (44x26mm) and power efficient
- Radiation tolerant and Space qualified (NASA EEE-INST-002 -Section M4 – PEMs & ECSS-Q-ST-60-13C)

Design Methodology

- 1. Definition of desired functional key features and interfaces to serve the Space use cases
- 2. Listing the required support functions for operating the system (supplies, clocks,...)
- 3. Specifying the detailed requirements for the each of the functions:
 - 1. Speed of the interfaces
 - 2. Density needed for the memories
 - 3. Power budget estimation to size supplies
- 4. Identifying Space-grade components to realize the specified functions
 - 1. Technical assessment to verify :
 - 1. Functional performance
 - 2. Quality/reliability
 - 3. Radiation performance
 - 2. Additional constraint: Minimize the total number of different manufacturers
- 5. Realize the actual board implementation (schematics, layout...)

6

Required Functionalities for the QLS1046-Space Edge Computing Board

Block	Purpose	Functions			
High-speed memory	Data buffering & processor computations support	DDR4 memory (already included on the QLS1046)			
Interfaces	Communication with the rest of the system (sensors, other processing boards, OBC,)	RGMII, SGMII, PCIe GPIO, low speed interfaces (UART, SPI,)			
Non-volatile memories	Store Uboot configuration OS & Data storage	NOR FLASH NAND FLASH			
Supervisor	Manage Boot & Reset configuration	Reset Management Watchdog Powerfail detection			
Clocks	Set the processor and peripherals operating frequencies	100 MHz, 125 MHz, 156,25MHz			
Power supplies	Power the processor and peripherals	3V3, 2V5, 1V8, 1V35, 1V2, 1V0, 0V6			

High Level Block Diagram

Teledyne Confidential; Commercially Sensitive Business Data

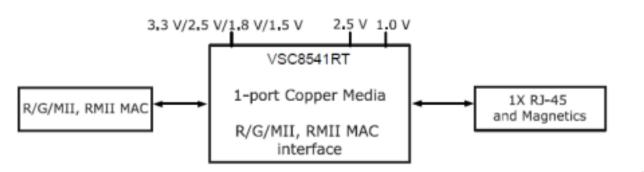
Copyright Teledyne e2v Semiconductors

Interfaces selection

- ✤ High Speed Interfaces:
 - Critical selection: Data rate matching computing capabilities (interfaces should not be bottleneck)
 - ✤ 2 x Ethernet RGMII (Gbps)
 - ✤ 2 x Ethernet SGMII (Gbps)
 - ✤ 3 x PCIe 3.0 (>Gbps)
 - ◆ 2 x Ethernet XFI (10Gbps), based on VSC8254 from Microchip (industrial grade)
 - Note: Up to 7 Ethernet Gbps connections with QLS1046-Space
- ✤ Low-speed interfaces :
 - ✤ UART, SPI, I²C, GPIOs
 - USB and SD card (non-Space for lab/ground use)

QLS1046-Space SerDes Modules Configuration

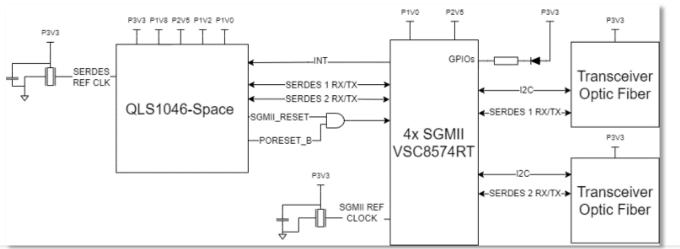
Serdes module 1 : 2 x XFI and 2 x SGMII


Serdes module 2 : PCIe

SRDS_PRT RCW[128	_	D SD1_RX0_P/N	C SD1_RX1_P/N	B SD1_RX2_P/N	A SD1_RX3_P/N	pro	g for all lanes/ tocols	SRDS_PRTCL_S2 RCW[144-159]	A SD2 RX0 P/	B SD2_RX1_P/N	C SD2 RX2 P/N	D SD2_RX3_P/N	nro	ig for all lanes/ tocols
(in he	ex)	SD1_TX0_P/N	SD1_TX1_P/N	SD1_TX2_P/N	SD1_TX3_P/N	When PCle operates at Gen1/2	When PCle operates at Gen3		N SD2_RX0_P/	SD2_RX1_P/N	SD2_RX2_P/N	SD2_RX3_P/N	When PCIe operates at Gen1/2	When PCle operates at Gen3
0000	0000 Unused						N				Gen //2	Gens		
3333	SG	GMII.9	SGMII.10	SGMII.5	SGMII.6	2222	not available	0000	Unused				2222	not available
1133	XF	FI.9	XFI.10	SGMII.5	SGMII.6	2211	not available	8888	PCIe.1 x4 2222 2222			2222		
1333	XF	FI.9	SGMII.10	SGMII.5	SGMII.6	2111	not available	5559	PCIe.1 x1	PCIe.2 x1	PCIe.3 x1	SATA	2221	Not available
2333	2.5	5G SGMII.9	SGMII.10	SGMII.5	SGMII.6	2111	not available	5577	PCIe.1 x1	PCIe.2 x1		.3 x2	2222	1111
2233	2.5	5G SGMII.9	2.5G SGMII.10	SGMII.5	SGMII.6	2211	not available							
1040	XF	FI.9	Unused	QSGMII.	Unused	2212	not available	5506	PCIe.1 x1	PCIe.2 x1	Unused	PCIe.3 x1	2222	1111
				6,5,10,1				0506	Unused	PCIe.2 x1	Unused	PCIe.3 x1	2222	1111
2040	2.5	5G SGMII.9		QSGMII. 6,5,10,1	Unused	2212	not available	0559	Unused	PCIe.2 x1	PCIe.3 x1	SATA	2221	not available
1163	XF	FI.9		PCIe.1 x1	SGMII.6	2211	not available	5A59	PCIe.1 x1	SGMII.2	PCIe.3 x1	SATA	2221	not available
2263	2.5	5G SGMII.9	2.5G SGMII.10	PCIe.1 x1	SGMII.6	2211	not available	5A06	PCIe.1 x1	SGMII.2	Unused	PCIe.3 x1	2222	1211
3363	SG	GMII.9	SGMII.10	PCIe.1 x1	SGMII.6	2222	2212	-			-		•	
2223	2.5	5G SGMII.9	2.5G SGMII.10	2.5G SGMII.5	SGMII.6	2221	not available							
3040	SG	GMII.9		QSGMII. 6,5,10,1	Unused	2222	not available							

High Speed Interfaces – RGMII implementation

- ✤ Need special Ethernet PHY: Microchip VSC8541RT
- ✤ RGMII PHY up to 1 Gb/s
- ✤ RJ45 connector on the board
- Good radiation performances
 - ✤ TID =100 krad (Si)
 - SEL-free >78 MeV.cm²/mg
- Voltage levels, clocks, and interface compatible with QLS1046-space
- ✤ Bonus: Other PHY in the portfolio are suitable to our needs (SGMII)



Special focus: Nicolas Ganry (Microchip) will give a presentation tomorrow the 7th at 9:50 « Advanced Ethernet Solutions for Space Applications »

High Speed Interfaces – SGMII implementation

- ✤ Need special Ethernet PHY: Microchip VSC8574RT
- ✤ SGMII PHY up to 1 Gb/s
- ✤ SFP cage (copper or optic fiber link)
- Good radiation performances
 - ✤ TID =100 krad (Si)
 - ✤ SEL-free >78 MeV.cm²/mg
- ✤ Voltage levels, clocks, and interface compatible with QLS1046-space
- ✤ Easy to manage (I²C)

Clocks

- ✤ Used for:
 - ✤ QLS1046
 - Processor (cores, platform)
 - DDR4 memory
 - Peripherals
- High speed interfaces (RGMII, SGMII, XFI, PCIe)
 have specific requirements
- QTECH clocks QT735-series
 - TID 50 krad (Si)
 - Small & standard footprint (3.2 x 5 mm)
 - Wide choice for the different needs
 - LVDS / CMOS / LVPECL
 - 1,8V, 2,5V and 3,3V
 - ✤ 100 MHz, 125 MHz and 156,25 MHz

Table 31-4. Valid SerDes RCW Encodings and Reference Clocks

SerDes protocol (given lane)	Valid reference clock frequency	Valid setting for	Valid setting for _CLK_	Valid setting for		
		SRDS_PRTCL_Sn	PLL1	PLL2	SRDS_DIV_*_Sn	
PCI Express 2.5	100 MHz	Any PCIe	0: 100 MHz	0: 100 MHz	10: 2.5G	
Gbps (doesn't negotiate upwards)	125 MHz		1: 125 MHz	1: 125 MHz		
PCI Express 5	100 MHz	Any PCIe	0: 100 MHz	0: 100 MHz	01: 5G	
Gbps (can negotiate up to 5 Gbps)	125 MHz		1: 125 MHz	1: 125 MHz		
PCI Express 8	100 MHz	Any PCle	0: 100 MHz	0: 100 MHz	00: 8G	
Gbps (can negotiate up to 8 Gbps)	125 MHz		1: 125 MHz	1: 125 MHz		
SATA (1.5, 3, 6	100 MHz	Any SATA	0: 100 MHz	-	Don't Care	
Gbps)	125 MHz		1: 125 MHz	-		
SGMII (1.25 Gbps)	100 MHz	SGMII @ 1.25	0: 100 MHz	0: 100 MHz	Don't Care	
	125 MHz	Gbps	1: 125 MHz	1: 125 MHz	1	
2.5 G SGMII (3.125	125 Mhz	SGMII @ 3.125	-	0: 125 MHz	Don't Care	
Gbps)	156.25 MHz	Gbps	-	1: 156.25 MHz	1	
QSGMII (5 Gbps)	100 MHz	Any QSGMII	0: 100 MHz	0: 100 MHz	Don't Care	
	125 MHz		1: 125 MHz	1: 125 MHz	1	
XFI (10.3125 Gbps)	156.25 MHz	-	-	1: 156.25 MHz	Don't Care	

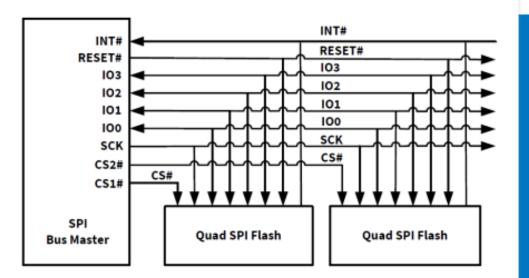
 A spread-spectrum reference clock is permitted for PCI Express, provided that common SerDes reference clock must be used for both link partners. Whenever the spread-spectrum clocking is used for the SerDes reference clock of a single PCI Express controller, the same SerDes PLL must not be used concurrently for any other protocols including another PCI Express controller.

2. Selecting a valid SerDes protocol (see SerDes protocols) automatically configures respective PLLs.

Non-Volatile Memories

✤ Needs:

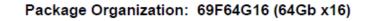
- Boot memory source:
 - Stores Uboot
 - Density required: typically few MB
 - QLS1046-Space boots NOR (parallel or QSPI interface) or eMMC/SD
 - No eMMC for Space today => NOR flash selected

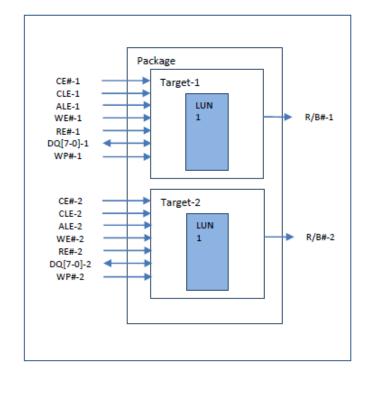

✤ OS & data storage:

- Density required: typically 1GB to few GB
- NOR flash density not sufficient
- ✤ QLS1046-Space supports parallel NAND, eMMC/SD
- NAND flash selected

Non-Volatile Memories – NOR Flash

- ✤ INFINEON CYRS17B512
- ✤ 64MB density
- QSPI interface (as in NXP design)
- ✤ Good radiation performance
 - 100 krad (Si)
 - SEL > 78 MeV.cm2/mg
- Power levels and interface compatible with QLS1046-Space
 - VCC = 3,3V and VCCQ = 1,8V/3,3V
 - ♦ Up to F = 133 MHz, 66 MB/s





15

Non-Volatile Memories – NAND Flash

- ✤ DDC WEB 69F64G16
- ✤ 16-bit parallel interface
- ✤ High Density options : 64 Gb (8 GB) up to 256 Gb (32 GB)
 - ✤ 8GB selected: used as 2 x 4GB 8-bit parallel interface
- ✤ Good radiation performances 100 krad (Si)
- Power levels and interface compatible with QLS1046space
 - ♦ VCC = 3,3V and VCCQ = 1,8V/3,3V
 - Up to 50MT/sec

Supervisor

- ✤ Handles part of the reset management
 - Reset

Teledyne Confidential; Commercially Sensitive Business Data

- Power fail
- Watchdog
- ✤ Renesas ISL706 supervisor used:
 - Good radiation performances
 - 100 krad (SI)
 - SEL > 86 MeV.cm2/mg
- Implementation extrapolated Freeway board from NXP
- \clubsuit Note: Supervisor could be a small μC or FPGA,

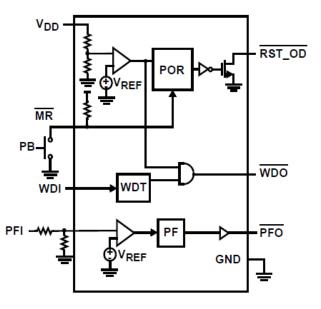
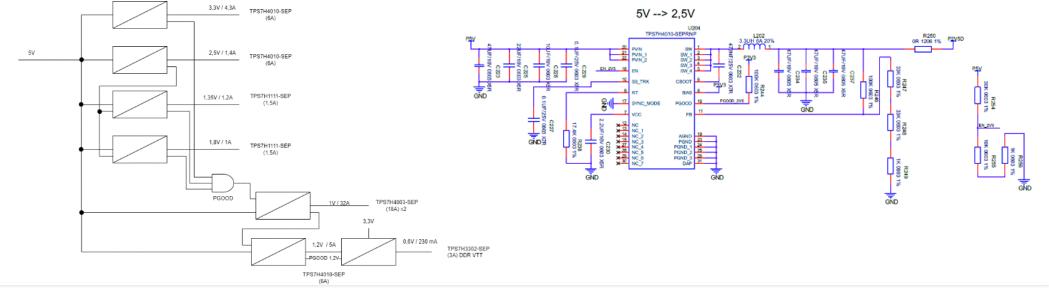


FIGURE 3C. ISL705CxH, ISL706CxH

Power Supplies Sizing

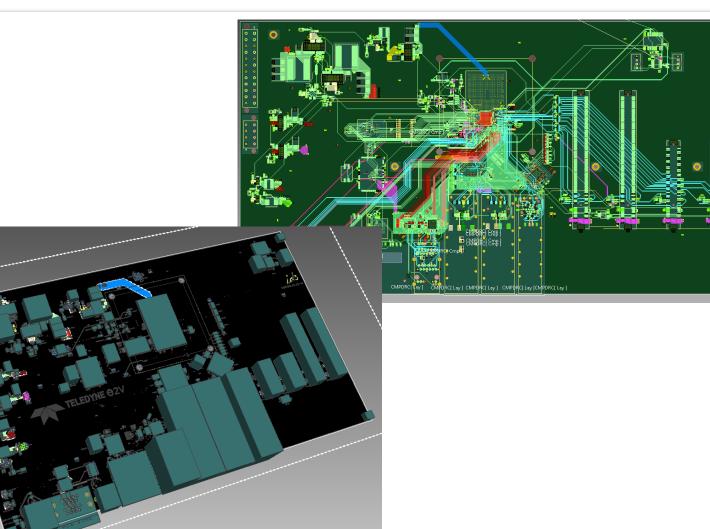

- ✤ After selecting and sizing all functions: Power can be estimated and supplies sized
- Board is supplied from a 5Vdc bus (Satellite Bus)
 - Exception: 12V separate supply for PCIe slaves
- Space-grade power supplies ICs from Texas Instruments
- Max board power @100W assumes worst case scenario
 with max computation power and all interfaces/peripherals
 Operating at max speed simultaneously (unrealistic)

Voltage (V)	Current (A)	Power (W)	Tolerance	Isolation
12	2,1	25,2		No
5	3,3	16,5		No
3,3	4,3	14,19	± 165 mV	No
2,5	1,4	3,5	± 120 mV	No
1,8	1	1,8	± 90 mV	No
1,35	1,2	1,62	± 67 mV	No
1,2	4	4,8	± 60 mV	No
1	32,5	32,5	± 30 mV	No
0,6	1	0,6	±6 mV	No
Total		100,71		

Power Supply Scheme

- Power sequencing required for proper power-up: supplies are chained
 - TPS7H4003-SEP, switching, up to 18A output current,
 - TPS7H4010-SEP, switching, up to 6A output current,
 - TPS7H1111-SEP, LDO, up to 1.5A output current,
 - TPS7H3302-SEP, DDR4 termination regulator,

Discussion and Next Steps


Summary:

 Approach to design Edge processing board

 QLS1046-Space reference design accelerates design & reduce risks

- ✤ Status and next steps:
 - Boards being assembled,
 - Validation expected end 2023
 - ✤ Reference kit for designers: H1 2024

Draft design files available

Credits

 Teledyne e2v LS1046—Space project, on which QLS1046-Space is based, is supported by CNES (French Space Agency) through an ESA ARTES program

Wilfrid Bertrand

System Development Engineer – Processing Solutions wilfrid.bertrand@teledyne.com

Teledyne e2v - Grenoble - France

Thomas Porchez

Application Engineer – Processing Solutions

thomas.porchez@teledyne.com

Teledyne e2v - Grenoble - France

Thomas Guillemain

Product Marketing Manager– Processing Solutions

thomas.guillemain@teledyne.com

Teledyne e2v - Grenoble - France

Teledyne Confidential; Commercially Sensitive Business Data

Copyright Teledyne e2v Semiconductors

Discussions and next steps

QUESTIONS ?

Teledyne Confidential; Commercially Sensitive Business Data

Copyright Teledyne e2v Semiconductors

22