

Jeanne TONGBONG
Patrice BENARD

EDHPC, Juan les Pins

AGENDA

RTIMS: Radiation Tolerant Intelligent Memory Stack

INTRODUCTION

- What is RTIMS Flash?
- OWhy to develop it ?
- OWhere to use it ?

THE ARCHITECTURE

- o RTIMS v1/v2
- o Zero error
- Long duration
- Stand alone

PRODUCTS

- Key Features
- Key Benefits

CONCLUSION

INTRODUCTION

What is RTIMS Flash?

- Radiation Tolerant Intelligent Memory Stack
 - o Radiation hardened design ASIC and tolerant NAND Flash
 - o Intelligent to manager user interface, plug and play
 - A memory stack to provide maximum density
- RTIMS is also:
 - o A philosophy answering requirements of space applications
 - Combining advanced NAND Flash performances and space reliability
 - o A longevity and radiation tolerance guarantee

INTRODUCTION

Context: why to develop RTIMS Flash

Data storage in space

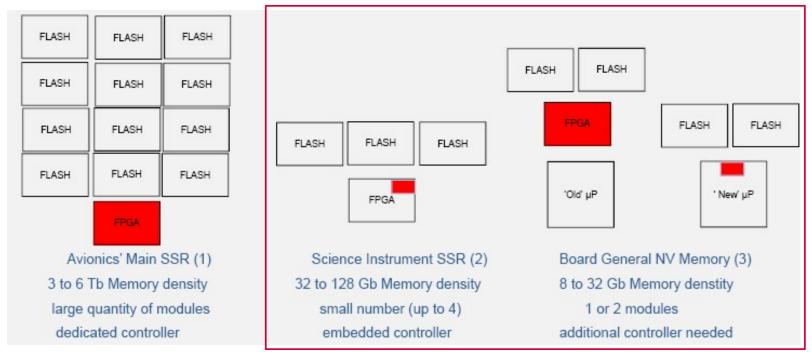
- Very High MemoryDensity Low weight
- Non Volatile Low power

NAND Flash Limitations

- Bad blocks Non continuous logic sectors
- Life time Memory cells 100
 Kcycles Write/Erase limitation
 Complex Behavior under radiation (SEL, HC SEFI, SEFI, SEFF, SEU, TID) No Rad
 Hard device available
- Short products' life cycle new basic device every 6 months

Users

- Want to focus on their applications/missions
- Need a more User friendly (No bad blocks), Long life time (Enhanced Write/Erase capability), Radiation protected and available on the Long life cycle (10 years) FLASH Memory



INTRODUCTION

Applications

3 typical Flash designs

'Small' or 'medium' size Mass memory

AGENDA

RTIMS: Radiation Tolerant Intelligent Memory Stack

INTRODUCTION

- What is RTIMS Flash?
- OWhy to develop it ?
- OWhere to use it ?

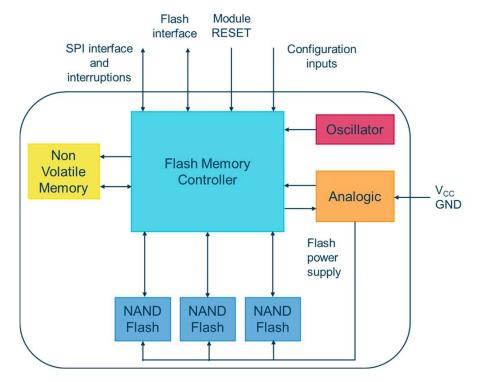
THE ARCHITECTURE

- o RTIMS v1/v2
- o Zero error
- Long duration
- Stand alone

PRODUCTS

- Key Features
- Key Benefits

CONCLUSION

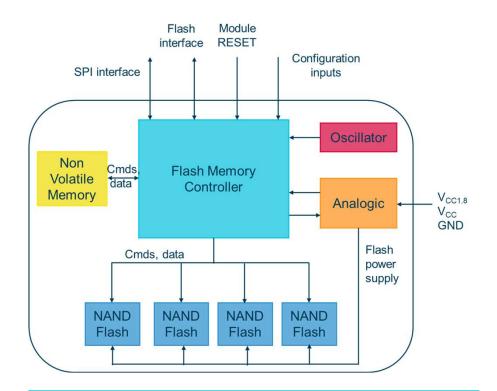


ARCHITECTURE

RTIMS Flash v1

- Mass memory: NAND Flash
- NV memory: SEE immune MRAM
- FMC: Radiation hardened by design Flash memory controller
- Peripheral: Power management + oscillator

RTIMS Flash v1

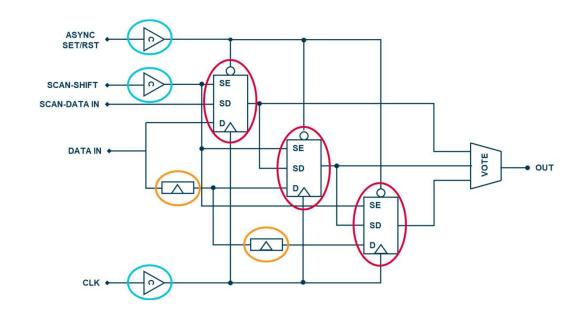

I Confidential

ARCHITECTURE

RTIMS Flash v2

- Mass memory: NAND Flash
- NV memory: SEE immune MRAM
- FMC: Radiation hardened by design Flash memory controller
- Peripheral: Power management + oscillator

RTIMS Flash v2



I Confidential

FMC Design

- TMR inside the ASIC
 - Flip flop is triplicated to prevent from SEU
 - Data path is delayed by delta in the 2nd flip-flop, 2*delta in the 3rd flip-flop, to prevent from SET
 - Special anti-SET buffers are added on clock trees, reset trees and SCAN tree

ASIC TMR

Technology

- ATMX150RHA Rad-Hard CMOS 150nm
- Radiation guarantee:
 - TID > 300 krad(Si)
 - o SEL immunity ≥ LET 62 MeV.cm²/mg at Tj = 125°C
 - SET/SEU cross-section of 1.0E-06 cm2 at threshold LET 62 MeV.cm²/mg
 - SEFI: cannot be guaranted because it is related to the specific topology.
 - o TMR of all internal registers

Layout FMC RTIMS Flash v2

NAND Flash Data Protection

- Modes of data protection
 - \circ No protection
 - o Hamming code with interleave:
 - o Reed Salomon code
 - ∘ RS & Ham codes

Protection Mode	SEL	HC SEFI	SEFI	SEU	MBU
None	Y	Υ	N	N	N
Hamming	Υ	Υ	N	Υ	N
Reed Salomon	Υ	Υ	Y	Υ	Υ
RS & Ham	Y	Y	Y	Y	Y

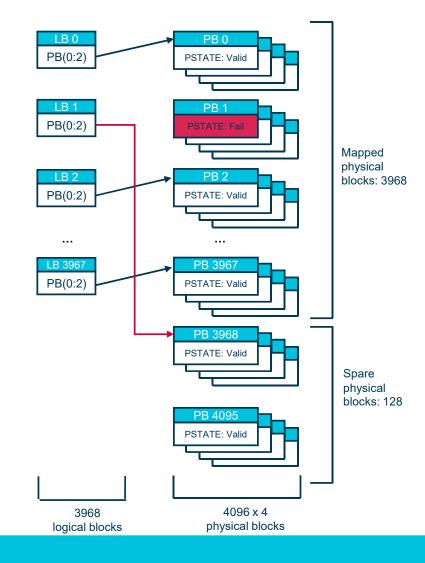
Depending on the configuration 32 or 64 Gb of data are available

Protection Mode	None	Ham	RS	RS & Ham
Module size	64 Gb	64 Gb	32 Gb	32 Gb

Latch-up protection

To protect FLASH memory array from potential Latch-Up, 2 analogical functions are implemented inside RTIMS FLASH:

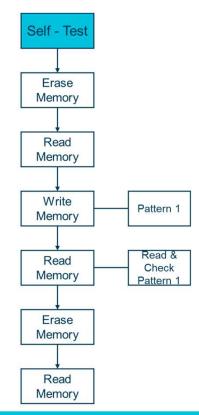
- Over Current Detection
 - The global power consumption for the 4 FLASHs is monitored on each supply line (1.8 V and 3.3 V). A
 flag is sent to the controller if a threshold is reached.
- Power Switch
 - FLASH memory array is switched down by the controller, in case an overcurrent is detected after during a Program/Read/Erase operation.
 - o FLASH memory array is automatically turned back on after a delay.



LONG DURATION

Block Management System

- Continuous logical block implementation
 - Logical block#0 points to physical blocks #0
 - o 3968 logical blocks, numbered from 0 to 3967
 - Only 1 logical block (LB) for the 4 physical blocks
- Wear Leveling algorithm
 - o 4096 blocks, numbered from 0 to 4095
 - o Each block points to a unique logical block
 - Linked list of logical blocks sorted by P/E counter
 - A new logical block is linked to the requested file each time a Program is requested



LONG DURATION

Internal Self-Test algorithm

An internal Self-Test is implemented inside RTIMS FLASH:

- Find new failed physical blocks
- Run time: No more than 30 minutes to complete
- Self-Test operations: Erase, Write and Check the full memory with static pattern
- Block #0 is not part of the Self-Test, to preserve potential boot content

Self-Test algorithm

AGENDA

RTIMS: Radiation Tolerant Intelligent Memory Stack

INTRODUCTION

- What is RTIMS Flash?
- OWhy to develop it ?
- OWhere to use it ?

THE ARCHITECTURE

- o RTIMS v1/v2
- o Zero error
- Long duration
- Stand alone

PRODUCTS

- Key Features
- Key Benefits

CONCLUSION

Key Features

ELECTRICAL PERFORMANCES

- o Power supply: 1.8 V & 3.3 V
- o Memory size: 32 Gb (w/ ECC), 64 Gb (w/o ECC)
- SLC NAND Flash technology
- o Synchronous and asynchronous modes
- 10 years data retention
- o 100, 000 P/E cycles
- o Memory organization: 4096 blocks of 8/16 Mb
- o Memory Access: 8 bit standard FLASH I/F
- Same Fast Access Time than the standard Flash basic device

RADIATION PERFORMANCES

- TID > 50 krad(Si)
- SEL/SEB/SEGR > 60 MeV.cm²/mg
- SET > 60 MeV.cm²/mg
- SEU mitigated by design (configurable ECC protection mode and ASIC TMR)
- High Current SEFI mitigated by design

Key Features

RTIMS USER INTERFACE

- Dedicated H/W configuration pins for simple stand alone configuration
- Serial Port Interface for RTIMS flash configuration, command and telemetry
 - S/W configuration register
 - Status register (Module TM information, in particular nb of SEU, nb bad blocks, ...)
- External H/W interrupt signals (Module TM information, in particular in case of Latch-Up and HC SEFI H/W protection activation)

SERVICES

- o Power on reset
- o Internal Self test of FLASH memory array
- Format the whole FLASH memory array (except block 0)
- Automatic add of potential new Bad Block

Why RTIMS Flash?

Data storage in space

- Very High Memory Density – Low weight
- Non Volatile Low power

NAND Flash Limitations

- Bad blocks Non continuous logic sectors
- Life time Memory cells 100
 Kcycles Write/Erase limitation
 Complex Behavior under radiation (SEL, HC SEFI, SEFI, SEFI, SEFF, SEU, TID) No Rad
 Hard device available
- Short products' life cycle new basic device every 6 months

Users

- Want to focus on their applications/missions
- Need a more User friendly (No bad blocks), Long life time (Enhanced Write/Erase capability), Radiation protected and available on the Long life cycle (10 years) FLASH Memory

Key Benefits

At device & module level

- Long duration
 - No need to take care of Flash duration issue (bad block, wear leveling, ...)
- Zero error:
 - No need to take care of invalid bit and radiation errors (TID, SEL, SEU, SET, SEFI, HCE, ...)
- o Stand-alone
 - No need of additional resource to work with RTIMS to stand in harsh environment

System level

- Release the computing resource in the system
- o Reduce design load
- Saving area board
- Cost efficient



CONCLUSION

- RTIMS Flash is a zero error, long duration NAND Flash that can be use as a stand alone small data recorder in space environment.
- The family line started in 2013 is now enriched with a new module: 3DSS64G08US2818 offering higher density and power efficiency with equivalent reliability performances as the first RIMS Flash module.
- 3DSS64G08US2818 available in December 2023 (Engineering Models) and June 2024 (Flight Modules)

www.3d-plus.com

408 rue Hélène Boucher 78530 Buc - **FRANCE** +33 130 832 650 151 Callan Ave, Suite 310 San Leandro CA 94577 - **USA** (415) 316 0981

OUR MISSION IS THAT YOU ACHIEVE YOURS

