

EDHPC 2023

Data Processing System Architecture and Lessons Learned from the LisR Mission

Konstantin Schäfer, Clemens Horch, Atin Jain, Andreas Brunn, Marius Bierdel, Frank Schäfer

Architecture & Design

Mission Overview

- Long wave Infrared demonStratoR
- Technology demonstrator for crop monitoring
- EXIST-Project of constellr
- Cryo-cooled thermal sensor
- Two bandpass filters in thermal infrared
- Mounted to NanoRacks External Platform (NREP) on ISS
- Swath width 25 km, GSD ~80 m

Architecture & Design

Subsystem Overview

- New Space approach with COTS hardware
- Two Model approach
 - Engineering and Qualification Model
 - Flight Model
- LisR consist of four main subsystems:
 - Freeform optics, designed and built by Fraunhofer IOF & SPAXEOPTIX
 - Commercial Off the Shelf (COTS) infrared Integrated Detector Dewar Cryocooler Assembly (IDCCA)
 - COTS CubeSat Electrical Power System (EPS)
 - Data Processing Unit (DPU), designed and built by Fraunhofer EMI

Architecture & Design

Data Processing Unit (DPU)

- Developed for Nano- & Microsatellites
 - CubeSat mounting standard (PC/104)
 - Size: ~ 100 x 100 x 25 mm³
 - Weight: ~ 0.4 kg
 - Average power: ~8W
- Based on a ZynqMP Multi Processing System on a Chip (MPSoC)
 - Quad Core Cortex-a53 application processing unit
 - Dual Core Cortex-R5 real time processing unit
 - Ultrascale+ Field Programmable Gate Array (FPGA)
- Redundant SD-cards, eMMC & QSPI for firm- and gateware
- Single Level Cell Solid State Drive for payload data
- Payload interface implemented in FPGA of the SoC
- Main software runs on a custom built GNU/Linux operating system
- Software can be automated via embedded Lua scripting-API

Testing & Mitigation COTS electronics in Low Earth Orbit

Thermal environment:

- Potentially significant temperature changes during orbit
- Heat dissipation
- Unknown hot spots in COTS components
- Mitigation approach:
 - Elaborate thermal modeling and testing in thermal vacuum chamber
 - Thermal monitoring of the system in orbit
 - Detection of overheating with onboard telemetry analysis on DPU

Thermal Vacuum Chamber at EMI

Testing & Mitigation COTS electronics in Low Earth Orbit

Radiation environment:

- LEO radiation consists of high energy sub-atom particles
- Total Ionizing Dose (TID) and Single Event Effects (SEE)
- The TID evokes displacement damage \rightarrow semiconductor behavior is altered
- SEEs cause Soft- & Firmware failures or create Single Event Latchups (SEL) that cause permanent damage
- Mitigation Approach:
 - Testing not possible in given project constraints
 - No universal solution available

High energy particles striking a transistor

Testing & Mitigation Radiation effect mitigation

- TID effects:
 - Less concern due to short planned mission time
 - Instrument is covered in aluminum alloy shielding
 - Single Level Cell Flash storage is used wherever possible
 - Observe telemetry and switch to redundant part if possible
- SEL detection is handled by the EPS
- Single Event Upsets (SEUs) & Single Event Functional Interrupts (SEFIs):
 - Redundant boot media
 - Checksums for boot files
 - Error Detection and Correction (EDAC) for main memory
 - Cyclic Redundancy Checking (CRC) for FPGA configuration memory
 - Software watchdog timer
 - Watchdog timer in EPS

Fraunhofer

Redundancy logic of the DPU's firmware files

Processing & memory systems of the DPU and their

EDAC capabilities

Operations Telemetry

- Telemetry values were collected by the DPU into a database
- During transmission, selected telemetry values were linked down
- Broadband downlink and onboard storage capacity enabled large scale collection and analysis of:
 - Temperature telemetry from external and internal sensors
 - Power consumption telemetry from EPS and power sensors
 - Soft- and Firmware telemetry like system load, uptime, storage, etc.
 - EDAC and SEM telemetry
 - ISS attitude & position

DPU temperature and power telemetry of LisR

Operations Scripting

- Main DPU software implements:
 - Basic functions e.g. switch mode, get telemetry, etc.
 - Storage management
 - Telemetry collection
 - Communication Protocols
- Functionality is accessibly via Lua-API
- High level operational commands implemented in Lua scripts
 - \rightarrow Extendible
 - ightarrow Easily adaptable
 - → Enhanced Safety
 - \rightarrow No Need to upgrade the software
- Operations script selected, started and stopped via NREP command

DPU.cmd.system.setOperationMode(DPU.enums.mode.CONVERT)
starttime_capture = DPU.tools.get_time()

while 1 do

```
DPU.tools.sleep(sleep_time)
```

if DPU.telemetry.hw.temp_camera_sensor > camera_sensor_target_temp then DPU.cmd.system.setOperationMode(DPU.enums.mode.IDLE) DPU.tools.wait_for_idle()

record = DPU.cmd.storage.lastRecordId()
DPU.cmd.storage.recordArchiveSftp(record)
DPU.cmd.system.telemetryArchiveSftp(starttime - log_time_overlap, DPU.tools.get_time())

repeat

```
DPU.tools.sleep(sleep_time)
until DPU.telemetry.hw.temp_camera_sensor < camera_sensor_target_temp</pre>
```

```
DPU.tools.sleep(sleep_time)
```

DPU.cmd.system.setOperationMode(DPU.enums.mode.CONVERT)

if DPU.tools.get_time() > starttime_capture + record_interval then
 DPU.cmd.system.setOperationMode(DPU.enums.mode.IDLE)
 DPU.tools.wait_for_idle()

record = DPU.cmd.storage.lastRecordId()
DPU.cmd.storage.recordArchiveSftp(record)
DPU.cmd.system.telemetryArchiveSftp(starttime_tm - log_time_overlap, DPU.tools.get_time

```
DPU.cmd.system.setOperationMode(DPU.enums.mode.CONVERT)
starttime_capture = DPU.tools.get_time()
starttime_tm = DPU.tools.get_time()
end
```


Operations Results

- 20 weeks of recorded uptime
- >9.3 million frames captured
- ~500 million km² land surface captured
- 6 software updates
- 2 planned reboots (0 unplanned)

 \rightarrow Mission successfully demonstrated the technology for the upcoming HiVe constellation

Irrigated fields in Texas (Apr. 22)

Town in Xinjiang (Apr. 22)

Rhine near Freiburg (Apr. 22)

Operations Telemetry Analysis

• Thermal:

- All measured temperatures stayed within a safe range
- Radiation effects:
 - No bit flips in main memory were detected (no active scrubbing)
 - The Soft Error mitigation Controller did not report any SEUs
 - No unexpected behavior due to SEFIs was observed
 - The EPS didn't detect any SELs in the bus & data processing electronics
 - ightarrow LisR was well shielded by the ISS and the NREP
 - ightarrow Mission duration was to short for long term effects

LisR mounted on NREP

Temperature sensor and EDAC telemetry of LisR

Operations Lessons learned

- For anomaly...
 - ... detection only few telemetry is necessary
 - ... analysis detailed telemetry is valuable
- \rightarrow Telemetry storage and selective downlink has shown its value
- Reference telemetry for comparison is mandatory
- \rightarrow If there's not enough time in advance, keep your EM running during the mission
- The more testing is done in advance, the better
- Scripting enables evolutionary in orbit operations without software updates:
 - In the beginning: Keep it as simple as possible
 - Gradually increase script complexity

Decrease of I/O current on FPGA Bank during the mission

LISR&NREP mounted on the ISS

Contact

Konstantin Schäfer Fraunhofer EMI System Solutions <u>konstantin.schaefer@emi.fraunhofer.de</u>

Fraunhofer EMI Ernst-Zermelo-Str. 4 79104 Freiburg www.emi.fraunhofer.de Marius Bierdel Constellr GmbH

marius.bierdel@constellr.com

Constellr GmbH Heinrich-von-Stephan-Straße 5c 79100 Freiburg www.constellr.com

