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 Telemetry Anomalies

• What is an anomaly?

• Unexpected variance in telemetry data


• What does an anomaly look like?

• Point/Contextual


• What causes anomalies?

• The Space Environment

2



Experiment

• Q1: Can Statistical, Classical and Deep Learning models reliably detect 
anomalies in a satellite dataset?


• Q2: Do Classical Learning and Deep Learning Methods outperform 
industry-standard statistical methods?


• Q3: Is there a model that outperforms the current industry standard?

• Q4: Is this model capable of being deployed on low-power devices 

currently deployed in space missions?

3



Current Anomaly Detection Methods

• Current Industry Standards

• FDIR: Failure Detection, Isolation and Recovery

• Thresholding on data streams

• Statistical methods such as ARIMA

• Ground Based Systems


• Drawbacks compared to Machine Learning alternatives

• Generally cannot detect contextual anomalies

• Incapable of multivariate analysis on multiple telemetry channels

• Generally limited to ground operations and relies on satellite operators
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Classical & Deep Learning Models

• Classical Learning


• Clustering - K-Means Clustering


• Decision Trees - Isolation Forest


• Deep Learning


• Point Prediction - Long to Short Term Memory 
(LSTM) models


• Autoencoder - Dense, Convolutional, 
Variational, LSTM


• Transformer


• Generative Adversarial Network


• Hybrid - LSTM Encoder, Convolutional Decoder
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Dataset Used

• Published by Hundman et al. in 2018

• Comprised of 82 channels of satellite telemetry

• Ranges in size from 1500 to 9000 data points.

• Sourced from NASA’s SMAP and MSL missions

• 1 to 3 labelled anomalies in each test dataset

• Multiple types of anomalies


• This experiment took 5 channels from this dataset to train on with differing 
anomaly types and sources
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Dataset Used Contd.
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Training Step

• Preprocessing

• Moving window approach


• Model specific preprocessing

• Look back for LSTM models


• Model design

• Classical Learning Parameters: K-means, Isolation Forest

• Hidden Layers/Neurons


• Tuning

• Grid Search

• Kerastuner


• Testing
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ROC Curve
• AUC


• The Area Under a 
Reciever Operator 
Characteristic Curve


• Rank

• Ranked all models on 

each channel
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Metrics



Results
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Conclusion

• LSTMs seem to show the most promise after multiple training rounds 
with parameter tuning


• The hybrid LSTM CNN model out classes the basic LSTM autoencoder, 
but fails entirely on A-2


• Other models perform well such as the Transformer model and CNN 
autoencoder


• Overall, the LSTM autoencoder and Hybrid autoencoder architectures 
have performed the best and will be the best basic models available for 
limited hardware


• Almost all deep learning and classical learning methods have 
outperformed the ARIMA methods
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Future Work
• Deployment on space hardware


• Moving to an intel Myriad X as it has flight heritage

• CogniSAT-XE2


• Multivariate model development

• Generation of Datasets

• Solnix Satellite Anomaly Dataset

• Investigate multiple preprocessing options
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Flight

• Phi-Sat1

• Earth Observation

• Intel Myriad 2

• Commercially Available Chip

• Successfully deployed CloudScout
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Thank You!
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