

Inference and Evaluation of Deep Convolutional Neural Networks on Microchip's Hardware Accelerator Vectorblox

EDHPC – 5th Oct 2023

Matteo Dadà

Luca Zulberti

Pietro Nannipieri

Luca Fanucci

Silvia Moranti

Outline

- 1. Introduction
- 2. CNNs to FPGA toolflows: metrics and comparison
- 3. Evaluation of inference time of some of the best-known patterns, sweeping different parameters
- Sentinel 2
- 5. Conclusion

Outline

1. Introduction

- 2. CNNs to FPGA toolflows: metrics and comparison
- different parameters
- Sentinel 2
- 5. Conclusion

3. Evaluation of inference time of some of the best-known patterns, sweeping

Introduction

Convolutional neural networks (CNNs): 3 main types of layers

1) Convolutional layer

	0	1	0	U	2	1	
Red	0	1	0	1	0	0	(
	0	0	0	2	2	0	(
	0	2	2	2	1	1	(
	0	0	0	0	0	0	(
	_	_	_	_	_	_	-
	0	0	0	0	0	0	(
	0	2	2	1	1	1	(
	0	2 1	2 2	1 2	1 1	1 0	(
Green	0 0 0	2 1 1	2 2 0	1 2 0	1 1 1	1 0 1	

Blue

0 0 0 0 0 0 0 0 1 1 2 2 2 0 1 0 0 2 1 0

0 2 2 1 2 0

0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 2 2 1 0

0 2 1 2 0 0 0

0 2 1 0 2 0 0

 0
 1
 1
 0
 2
 0
 0

 0
 1
 1
 1
 0
 1
 0

 0
 1
 1
 1
 1
 1
 0

 0
 0
 0
 0
 0
 0
 0

F	ilter	3
1	0	
0	0	
0	0	(
F	ilter	2
1	0	

0 0

Filter 2					
1	0	1			
1	0	0			

1 0 0

2+0+1+0+0+0+1+0+0 = 4

0+0+2+0+0+0+0+0=2

Filter 1

0+0+0+0+0+0+1+1+0 = 2

4	9	2
5	6	2
2	4	5
5	6	8
	2	

3) Dense layer (final classifier

2) Pooling layer

				 -	
4	9	2	5		
5	6	2	4	6.0	3.3
2	4	5	4	4.3	5.3
5	6	8	4		

Avg Pooling

Introduction

Increasingly complex and high-performance networks needed to achieve ever greater accuracy:

Source: Best deep CNN architectures and their principles: from AlexNet to EfficientNet

Why choose FPGAs to accelerate (C)NNs?

Good trade-off between performance and flexibility:

- area and power optimization with respect to GPUs
- more flexible solution than ASICs, thanks to their reprogrammability
- radiation-tolerant FPGAs are suitable for AI use in space applications
- However, the same drawback of ASICs:
- bigger design effort and a more complicated design flow compared to general-purpose solutions

Need for toolflows to automate CNN mapping on FPGAs

Introduction

(C)NN-FPGA Toolflows metrics

Input Interface	Tensorflow, Pytorch, Caffe, MxNet, DarkNet					
Supported Layer List	Dense, Convolutional, Pooling, Reshape ResNet, Inception					
Hardware Architecture	Streamin	Streaming Architecture / Single Computation Engine				
Portability	Different Vendors and Families	Different Setups (SoCs, host FPGA-servers, standalone FPGA devices)	Different Sizes			
Arithmetic Precision	Fixed Point (FXP) / Floati	ng Point (FP)	ynamic / Uniform			
Design Space Exploration (DSE)	User Driven / Not User Driven					

l, Pooling, Reshape	ResNet, Inception

Toolflow	Portability	Arithmetic Precision	Interface	HW architecture	DSE	Supported Layers
VectorBlox SDK	Microchip's PolarFire SoC and FPGAs	Dynamic FXP	TensorFlow, Caffe, MxNet, PyTorch, DarkNet	CoreVectorBlox	User-driven	CNN, Dense, Res., Incep

Portability

One of the primary constraints inherent in vendor-specific toolflows like VectorBlox lies in portability, as it exclusively supports Microchip's PolarFire and PolarFire SoC FPGAs.

Hardware used: PolarFire SoC FPGA IcicleKit, currently only PolarFire FPGA is radhard.

Objectives of this work

This work aims to characterize the use of PolarFire to accelerate CNNs on satellite applications.

The use of PolarFire for this purpose should be considered attractive for several reasons:

- PolarFire FPGAs are low power at mid-range densities with relevant security and reliability features.
- PolarFire FPGAs are an interesting solution in terms of cost.

Hardware used: PolarFire SoC FPGA IcicleKit.

1. Introduction

2. CNNs to FPGA toolflows: metrics and comparison

- different parameters
- Sentinel 2
- 5. Conclusion

3. Evaluation of inference time of some of the best-known patterns, sweeping

CNNs to FPGA toolflows: metrics and comparison .eesa

HW Architecture: CoreVectorBlox IP

Primary blocks of CoreVectorBlox:

- Control Registers
- Microcontroller
- MXP Vector Processor
- CNN Accelerator

Design Space Exploration (DSE)

Design Space Exploration (DSE) is completely up to the user. Three size configurations (V250, V500, V1000) are available depending on the desired level of performance. V500 was chosen.

11

CNNs to FPGA toolflows: metrics and comparison Cesa

VectorBlox SDK Flow Diagram

Input Interface

Accepts models in many different frameworks (Tensorflow, PyTorch, Caffe...)

Model Compression

Model Optimization (removing dropout, batch normalization...)

Quantization (from FP32 to INT8):

 Dynamic Fixed-Point (FXP) Quantization (Different bitwidths and scale factors across different layers)

Calibration

Runtime Generation (BLOB generation)

12

CNNs to FPGA toolflows: metrics and comparison cesa

Toolflow Comparison

Toolflow	Portability	Arithmetic Precision	Interface	HW architecture	DSE	Supported Layers
VectorBlox SDK	Microchip's PolarFire SoC and FPGAs	Dynamic FXP	TensorFlow, Caffe, MxNet, PyTorch and DarkNet	CoreVectorBlox	User-driven	CNN, Dense, Res., Incep
Vitis AI	Xilinx (AMD) SoC & Versal/Alveo cards	Dynamic FXP	PyTorch, TensorFlow, and ONNX	CPU+SCE	User-driven	CNN, Dense, Res., Incep., RNN
Matlab DL HDL Toolbox	Xilinx/Intel SoC	Dynamic FXP (uniform bitwidth/ different scaling factors)	PyTorch, TensorFlow, and ONNX	Deep Learning Processor	User-driven	CNN, Dense, Res., Incep., LSTM
fpgaConvNet	Xilinx SoC	Uniform FXP & FP	Caffe & Torch	Reconfigurable Streaming	Not User-driven	CNN, Res., Incep., Dense
FP-DNN	Intel Standalone	Uniform FXP & FP	TensorFlow	CPU+SCE	Not User-driven	CNN, Dense, Res., RNN
Snowflake	Xilinx SoC	Uniform FXP	Torch	CPU+SCE	Not User-driven	CNN, Res., Incep

1. Introduction

2. CNNs to FPGA toolflows: metrics and comparison

- different parameters
- Sentinel 2
- 5. Conclusion

3. Evaluation of inference time of some of the best-known patterns, sweeping

Evaluation of some of the best-known patterns

a) Convolutional Block (Conv2D-Relu-AveragePool2D)

b) Dense1000-DenseX-Softmax

· e esa

1. Introduction

- 2. CNNs to FPGA toolflows: metrics and comparison
- different parameters
- Sentinel 2

5. Conclusion

3. Evaluation of inference time of some of the best-known patterns, sweeping

Implementing ML algorithms using Vectorblox

Eurosat dataset (RGB version) from Copernicus Sentinel2

- 64×64 images (RGB)
- 10 classes:
 - AnnualCrop
 - Forest
 - HerbaceousVegetation
 - Highway
 - Industrial
 - Pasture
 - PermanentCrop
 - Residential
 - River
 - SeaLake

- 27000 Images
 - 18900 Training
 - 5400 Validation
 - 2700 Test

Implementing ML algorithms using Vectorblox

Resource utilisation:

Size	Vector Processor	Vector	CNN Accelerator	Peak CNN
Configuration	Width	Scratchpad	Array Size	Throughput
V250	128-bit	64 kB	16x16	79 GOPs
V500	256-bit	128 kB	16x32	146 GOPs
V/1000	OFC bit	256 kD	20,20	bzo cope
V1000	200-DIL	200 KB	32X32	P19 GOPS

The resources used depend only on the <u>size configuration</u> parameter and not on the network being run. An <u>overlay approach</u> is used, where one instantiation can run different networks without needing to be resynthesized.

Resource utilisation on MPFS250T:

Size Configuration: V500					
RESOURCE	V500	MPFS250T	UTILIZATION %		
LUT4	46622	254k	18,35 %		
DFF	48546	254k	19,11 %		
MATH BLOCKS	176	784	22,45 %		

Analysis of four increasing complexity models

a) My custom CNN

b) Transfer learning: Mobilenetv1

Layer (type)	Output Shape	Param #
keras_layer (KerasLayer)	(None, 768)	1832976
dense_2 (Dense)	(None, 10)	7690

c) Transfer learning: Resnet50v1

Layer (type)	Output Shape	Param #
keras_layer_2 (KerasLayer)	(None, 2048)	23561152
dense_4 (Dense)	(None, 10)	20490

d) Transfer learning: Inceptionv3

Layer (type)	Output Shape	Param #
keras_layer (KerasLayer)	(None, 2048)	21802784
dense (Dense)	(None, 10)	20490

Analysis of four increasing complexity models

COMPARISON:

	Custom model	Mobilenetv1	Resnet50v1	Inceptionv3
Total parameters	508.618	1.840.666	23.581.642	21.823.274
Trained parameters	508.618	7.690	20.490	20.490
Untrained parameters	0	1.832.976	23.561.152	21.802.784

	Custom model	Mobilenetv1	Resnet50v1	Inceptionv3
Inference (ms)	2,054	19,489	145,578	342,643
Data part size	562,512 (KB)	2180,352 (KB)	23,915768 (MB)	23,385584 (MB)
Entire model size	692,660 (KB)	7129,516 (KB)	50,613196 (MB)	49,260396 (MB)
FP32 accuracy % (on TensorFlow)	90,22	95,15	95,19	94,96
INT8 accuracy %	88,26	87,407	88,518	87,85

Outline

1. Introduction

- 2. CNNs to FPGA toolflows: metrics and comparison
- different parameters
- Sentinel 2
- 5. Conclusion

3. Evaluation of inference time of some of the best-known patterns, sweeping

Conclusion

Impressions on vectorblox:

Pros

- Microchip is responsive.
- They are willing to invest in and improve vectorblox, expanding the supported layers and applications for which to use it.
- Potential utilization of VBX in space application thanks to RT PolarFire FPGA.
- Many frameworks supported.
- No need to reprogram FPGA when updating CNN.

Cons

- Important layers unsupported (e.g. UpSampling2D).
- RNNs are not supported (therefore FDIR ML models are not supported).
- Inability to perform inference on a CNN expecting time series data input instead of images

22

THANKS!

Pietro Nannipieri pietro.nannipieri@unipi.it

