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Convolutional neural networks (CNNs): 3 main types of layers

1) Convolutional layer

2) Pooling layer

3) Dense layer (final classifier)

Introduction
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Increasingly complex and high-performance networks 
needed to achieve ever greater accuracy:

Why choose FPGAs to accelerate (C)NNs?

Good trade-off between performance and 
flexibility:

• area and power optimization with respect to 
GPUs

• more flexible solution than ASICs, thanks to their 
reprogrammability

• radiation-tolerant FPGAs are suitable for AI use 
in space applications

Introduction

However, the same drawback of ASICs:

• bigger design effort and a more complicated 
design flow compared to general-purpose 
solutions

Need for toolflows to automate CNN mapping 
on FPGAsSource: Best deep CNN architectures and their principles: from AlexNet to EfficientNet

https://theaisummer.com/cnn-architectures/


(C)NN-FPGA Toolflows metrics 
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Input Interface Tensorflow, Pytorch, Caffe, MxNet, DarkNet…

Supported Layer List Dense, Convolutional, Pooling, Reshape... ResNet, Inception…

Hardware Architecture Streaming Architecture / Single Computation Engine

Portability Different Vendors and 
Families

Different Setups (SoCs, host
FPGA-servers, standalone 

FPGA devices…) 
Different Sizes

Arithmetic Precision Fixed Point (FXP) / Floating Point (FP) Dynamic / Uniform

Design Space Exploration 
(DSE) User Driven / Not User Driven

Introduction



One of the primary constraints inherent in vendor-specific toolflows like VectorBlox lies in
portability, as it exclusively supports Microchip's PolarFire and PolarFire SoC FPGAs.
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Toolflow Portability Arithmetic 
Precision Interface HW 

architecture DSE Supported 
Layers

VectorBlox SDK Microchip's PolarFire 
SoC and FPGAs Dynamic FXP

TensorFlow, Caffe, 
MxNet, PyTorch, 

DarkNet…
CoreVectorBlox User-driven CNN, Dense, 

Res., Incep

Portability

Hardware used:
PolarFire SoC FPGA IcicleKit, currently only PolarFire FPGA is rad-
hard.

Introduction
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This work aims to characterize the use of PolarFire to accelerate 
CNNs on satellite applications.

Objectives of this work

The use of PolarFire for this purpose should be
considered attractive for several reasons:

• PolarFire FPGAs are low power at mid-range
densities with relevant security and reliability
features.

• PolarFire FPGAs are an interesting solution in terms
of cost.

Hardware used:
PolarFire SoC FPGA IcicleKit.
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HW Architecture: CoreVectorBlox IP

Primary blocks of CoreVectorBlox:

• Control Registers

• Microcontroller

• MXP Vector Processor

• CNN Accelerator 11

Design Space Exploration (DSE) is completely
up to the user. Three size configurations
(V250, V500, V1000) are available depending
on the desired level of performance. V500 was
chosen.

Design Space Exploration (DSE)

CNNs to FPGA toolflows: metrics and comparison



VectorBlox SDK Flow Diagram 

• Accepts models in many different frameworks
(Tensorflow, PyTorch, Caffe…)
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• Model Optimization (removing dropout, 
batch normalization…)

• Quantization (from FP32 to INT8):
• Dynamic Fixed-Point (FXP) Quantization 

(Different bitwidths and scale factors across 
different layers)

• Calibration

• Runtime Generation (BLOB generation)

Input Interface

Model Compression

CNNs to FPGA toolflows: metrics and comparison
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Toolflow Comparison

Toolflow Portability Arithmetic 
Precision Interface HW 

architecture DSE Supported 
Layers

VectorBlox SDK
Microchip's 

PolarFire SoC and 
FPGAs

Dynamic FXP
TensorFlow, Caffe, 

MxNet, PyTorch and 
DarkNet

CoreVectorBlox User-driven CNN, Dense, 
Res., Incep

Vitis AI Xilinx (AMD) SoC 
& Versal/Alveo cards Dynamic FXP PyTorch, TensorFlow, 

and ONNX CPU+SCE User-driven CNN, Dense, 
Res., Incep., RNN

Matlab DL HDL 
Toolbox Xilinx/Intel SoC

Dynamic FXP
(uniform bitwidth/ 
different scaling 

factors)

PyTorch, TensorFlow, 
and ONNX

Deep Learning 
Processor User-driven

CNN, Dense, 
Res., Incep., 

LSTM

fpgaConvNet Xilinx SoC Uniform FXP & 
FP Caffe & Torch Reconfigurable 

Streaming Not User-driven CNN, Res., 
Incep., Dense

FP-DNN Intel Standalone Uniform FXP & 
FP TensorFlow CPU+SCE Not User-driven CNN, Dense, 

Res., RNN

Snowflake Xilinx SoC Uniform FXP Torch CPU+SCE Not User-driven CNN, Res., Incep

CNNs to FPGA toolflows: metrics and comparison
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Evaluation of some of the best-known patterns

a) Convolutional Block

Example model
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b) Dense1000-DenseX-Softmax
(Conv2D-Relu-AveragePool2D)

Example model
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Implementing ML algorithms using Vectorblox

Eurosat dataset (RGB version) from Copernicus Sentinel2

• 64×64 images (RGB)

• 10 classes:
• AnnualCrop
• Forest
• HerbaceousVegetation
• Highway 
• Industrial
• Pasture
• PermanentCrop
• Residential
• River
• SeaLake

• 27000 Images
• 18900 Training
• 5400 Validation
• 2700 Test

17



Implementing ML algorithms using Vectorblox

The resources used depend only on the size configuration parameter and not on the network 
being run. An overlay approach is used, where one instantiation can run different networks 
without needing to be resynthesized.

Resource utilisation:
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Size Configuration: V500

RESOURCE V500 MPFS250T UTILIZATION 
%

LUT4 46622 254k 18,35 %
DFF 48546 254k 19,11 %

MATH 
BLOCKS

176 784 22,45 %

Resource utilisation on MPFS250T:



a) My custom CNN
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b) Transfer learning: Mobilenetv1

c) Transfer learning: Resnet50v1

d) Transfer learning: Inceptionv3

Analysis of four increasing complexity models

../LAVORO/Eurosat/Eurosat_mobilenetv1_CNN/Eurosat_mobilenetv1_CNN.tflite
../LAVORO/Eurosat/Eurosat_resnet50_v1_CNN/Eurosat_resnet50v1_CNN.tflite
../LAVORO/Eurosat/Eurosat_inceptionv3_CNN/Eurosat_inceptionv3_CNN.tflite


COMPARISON:
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Analysis of four increasing complexity models
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Impressions on vectorblox:

22

Pros Cons

• Important layers unsupported (e.g.
UpSampling2D).

• RNNs are not supported (therefore FDIR ML 
models are not supported).

• Inability to perform inference on a CNN 
expecting time series data input instead of 
images

• Microchip is responsive.

• They are willing to invest in and improve 
vectorblox, expanding the supported layers 
and applications for which to use it.

• Potential utilization of VBX in space 
application thanks to RT PolarFire FPGA.

• Many frameworks supported.

• No need to reprogram FPGA when updating 
CNN.

Conclusion
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