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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Background: FPG-Al Toolflow for CNNs

» Automation toolflow for efficient deployment of pre-trained CNN models on FPGA technology [1], [2]
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

FPG-Al Key Features

» High degree of customization with respects to user’s constraints on:
» Resource consumption (DSP/On-chip memories)
» Post-quantization application metric deviations
> Inference time

» Unmatched device portability of the Modular Deep Learning Engine (MDE) thanks to:
> Absence of third-party IPs
» High scalability in terms of DSP/On-chip memory usage
> Fine-grain configurable through a .vhd file

=) Enabling the implementation on FPGAs from different vendors and heterogeneous

resource budgets!
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

FPG-AI: Current Objectives

» Extension of the FPG-AI to Recurrent Neural Networks (RNNS)
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Recurrent Neural Networks (RNNs)

» Commonly used for sequence classification or time series forecasting tasks (e.g. FDIR onboard satellite)

> Exploiting feedback loops to deal with temporal sequences of data

> Most popular architectures:
»  Long Short-Term Memory (LSTM)

> @current Unit (GRU)
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Model Compression of GRU layers

> Post-training quantization algorithm for
the quantization of GRU layers [4]

> From floating-point to fully fixed-point [

arithmetic
> Degrees of freedom:

> Features scale factor (LSBy)
>  State scale factor (LSB,)
> Weights scale factor (LSB,,) X
> Truncated bits after state point-wise
mUItIpIIer (bmul) [Tr:"lc] [ Trunc |

> Under the following hypothesis:
> LSBs powers of 2
> LSBs<1

- The output state can be returned as an input X,
with a simple truncation operation!
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Hardware Architecture for GRU layers

> Acceleration unit for GRU layers:
> PE blocks for matrix multiplication
>  ACT blocks for activation functions implementation as piece-wise linear approximations
> ADD, MUL blocks: point-wise adder and multiplier
> Sat, Truncation blocks for pruning signal bitwidths

Input/Output Interface
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Case Study - Application

> Fault Detection Isolation and Recovery (FDIR) system based on MARSIS (Mars Advanced Radar for
Subsurface and lonosphere Sounding) dataset [3]

> MARSIS radar is one of the instruments installed inside the payload of the ESA’s mission Mars Express,
launched on 2nd June 2003

> RNN-based models used to forecast temperature values collected by the sensors
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Case Study - Models

> Two GRU-based models analyzed:
»  2GRU: few GRU units w/o Dense layer
»  stacked2GRU: more GRU units w/ Dense layer

> Input: temperature measurements
> Output: predictions on future temperature values

» Maximum Absolute Error (MAE) used as quality metric

2GRU
GRU Layer GRU Layer a7
samples ‘»[ (32 Units) HLeaKYReLUH (4 Units) HLGGKYRGLU]_*—) pred
stacked2GRU

GRU Layer GRU Layer Dense 4
Tsamples ‘»[ 64 Unlti;) HLeakyReLUH (64 Unié) HLeakyReLUH (4 Units) J"‘" Tored
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Evaluation and Characterization

> Model Compression Results:

Model Architecture “ stacked2GRU

Floating-point MAE 0.064793 0.046151
Fixed-point MAE 0.076331 0.054003
Quantization Error 0.011538 0.007852
FP Memory Footprint [Mb] 0.117 1.16
FXP Memory Footprint [Mb] 0.018 0.145
Compression Rate 84.5% 87.5%
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Evaluation and Characterization

> Hardware implementation on a Xilinx Kintex Ultrascale KUO60:

Model Frequency
LUTRAM BRAM
Architecture ---“ [MHz]

28390 10088

2GRU (8.56%) (1.52%) ' - (12.83%) 86.90
92482 42567 1170

stacked2GRU - ggo) (6.42%) ] ] (42.39%) 72.46
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Benchmarking with Nvidia Jetson Nano

Kintex US Jetson Nano Jetson Nano
XQRKUO060 (5W) (MAXN)

Mean Absolute 2GRU 0.076331 0.064793 0.064793
Error stacked2GRU 0.054003 0.046151 0.046151
T 2GRU 0.728 2.522 2.918
[W] stacked2GRU 0.874 2.549 3.121
e es e 2GRU 4.56 833.72 510.74
[us] stacked2GRU 15.87 1409.25 863.26
Energy per 2GRU 3.32 2102.6 1490.3
Inference [W] stacked2GRU 13.87 3592.2 2694.2
TID [Krad] 100 20 20
SEL [MeV-cm?%mg] 80 N/A N/A

Antibes, France — 5 October 2023 17



Towards the Extension of FPG-Al Toolflow to RNN Deployment

On-going Development

> Complete the design of an end-to-end flow for RNNs

> Enable the support for NanoXplore technology

» Currently implementing a small-size CNN model (LeNet-5) on NanoXplore NG-Ultra FPGA

> Presentation of preliminary results at «NanoXplore’s 5th BRAVE days», 28-29 November,
European Space Research and Technology Centre (ESTEC)

NanoXplore
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Thank you for your attention!

Tommaso Pacini
Tommaso.pacini@phd.unipi.it
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Model Compression

> Post-training quantization:

> Dynamic quantization applied on layers’ inputs and
weights

> Truncation at layers’ output for further memory footrpint
reduction

> From floating-point to fixed-point arithmetic for boosting
hardware efficiency:

> Timing performance SisE
> Area consumption
> Power consumption

15 KB

> Layer folding: Batch Normalization, Average Pooling
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Design Space Exploration (DSE)

__________

> DSE inputs: M°de§e°s”3fifss°”] Gonstraint
» CNN model Parameters initial values ) J, s"",[""
» Target FPGA Minimum accuracy Quantization Setting Selection ] : ;ti;l-D;si-gr: S-p;ct-e‘:
> User’s constraints (optional) — Maximum inference time v Coem
Resources limitation _>L Arentiectural Parameter Tuning
> Exploration of the architectural parameters p Resoume‘tsﬂmamn ) Device J
space through an iterative algorithm 4V i T
» Detailed ana_lyticgl MDE model for performance and g ( eronce Time Estimation ] EEEEEEEEE \
resource estimation 5 l Resource
> DSE outputs: ' comstamschek |
> MDE configuration file L Exit .’_ Lf;r;n;e_T;n; ‘:
> Initialization files for memories Jr v IR
> Textual debug files (optional) [Configiferaﬂon nitalization ]
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Modular Deep Learning Engine (MDE)

> High portability: no third-party IPs used

> High scalability in terms of
DSP/On-chip Memory utilization

> Easily configurable through a file (.vhd)

> Model parameters:

> Input shape, # Layers, Layers type, # Classes,
etc.

> Quantization parameters:

» Inputs/weights bitwidths, Truncation and
Saturation bits

> Architectural parameters:

> # MAC units (Npg),# Neurons, Memory
primitives for each IP, etc.
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Enhanced Scheduling for Resource Sharing

Implemented resource-sharing
strategy within each GRU layer

Exploiting layer specific dataflow to
optimize resource consumption

Same sequence of operations (e.g.
gate units, point-wise operators)
repeated in separate time slots

Design of a control logic that enables
the reuse of resources over time

Achieving resource savings w/o
affecting the throughput of the layer

Xt
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Towards the Extension of FPG-Al Toolflow to RNN Deployment

Quantization of Activation Functions

> Non-linear activation functions (sigmoid, tanh) computed exploiting a piece-wise linear approximation:

Tanh

Input interval Output
x>2.375 y=1
1.5<x<2.375 y =0.09375x + 0.765625
1<x<15 y = 0.28125x + 0.484375
0.5=x<1 y =0.59375x + 0.171875
-0.5<x<0.5 y =0.9375x
-1<x< =05 y =0.59375x - 0.171875
-15<x< -1 y = 0.28125x — 0.484375
-2.375<x< =15 y = 0.09375x - 0.765625
x< —2.375 y=-1

Sigmoid
Input interval Output
X=5 y=1
2.375<x<5 y = 0.03125x + 0.84375
1<x<2.375 y = 0.125x + 0.625
-1<x<1 y=0.25x+0.5
-2.375sx< -1 y =0.125x + 0.375
-5<x< - 2.375 y =0.03125x + 0.15625
x< -5 y=0
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