

Towards the Extension of FPG-AI Toolflow to RNN Deployment on FPGAs for On-board Satellite Applications

Tommaso Pacini*, Emilio Rapuano*, Luciano Tuttobene*, Pietro Nannipieri*, Luca Fanucci*, Silvia Moranti[†]

*Department of Information Engineering, University of Pisa, Pisa, Italy

⁺ European Space Research and Technology Centre, European Space Agency (ESA), Noordwijk, The Netherlands

IEEE EDHPC 2023 Conference – Antibes, France

Tommaso Pacini tommaso.pacini@phd.unipi.it

Outline

- 1. Background: FPG-AI Toolflow for CNNs
- 2. Post-training Quantization of RNN Layers
- 3. HW Acceleration for GRUs
- 4. Results for FDIR Case Study
- 5. Conclusions

Outline

- 1. Background: FPG-AI Toolflow for CNNs
- 2. Post-training Quantization of RNN Layers
- 3. HW Acceleration for GRUs
- 4. Results for FDIR Case Study
- 5. Conclusions

Background: FPG-AI Toolflow for CNNs

> Automation toolflow for efficient deployment of pre-trained CNN models on FPGA technology [1], [2]

intel

FPG-Al Key Features

- > High degree of customization with respects to user's constraints on:
 - > Resource consumption (DSP/On-chip memories)
 - > Post-quantization application metric deviations
 - Inference time
- > Unmatched device portability of the Modular Deep Learning Engine (MDE) thanks to:
 - > Absence of third-party IPs
 - > High scalability in terms of DSP/On-chip memory usage
 - > Fine-grain configurable through a .vhd file

Enabling the implementation on FPGAs from different vendors and heterogeneous resource budgets!

MICROCHIP

FPG-AI: Current Objectives

- Extension of the FPG-AI to Recurrent Neural Networks (RNNs)
- > Enabling the support for NanoXplore FPGA devices

Antibes, France – 5 October 2023

https://activities.esa.int/index.php/4000141108

Outline

- 1. Background: FPG-AI Toolflow for CNNs
- 2. Post-training Quantization of RNN Layers
- 3. HW Acceleration for GRUs
- 4. Results for FDIR Case Study
- 5. Conclusions

Recurrent Neural Networks (RNNs)

- > Commonly used for sequence classification or time series forecasting tasks (e.g. FDIR onboard satellite)
- > Exploiting feedback loops to deal with temporal sequences of data
- Most popular architectures:
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)

Model Compression of GRU layers

- Post-training quantization algorithm for the quantization of GRU layers [4]
- From floating-point to fully fixed-point arithmetic
- Degrees of freedom:
 - Features scale factor (LSB_x)
 - State scale factor (LSB_h)
 - Weights scale factor (LSB_w)
 - Truncated bits after state point-wise multiplier (b_{mul})
- Under the following hypothesis:
 - LSBs powers of 2
 - $\succ LSBs < 1$
 - The output state can be returned as an input with a simple truncation operation!

Outline

- 1. Background: FPG-AI Toolflow for CNNs
- 2. Post-training Quantization of RNN Layers
- 3. HW Acceleration for GRUs
- 4. Results for FDIR Case Study
- 5. Conclusions

Hardware Architecture for GRU layers

- Acceleration unit for GRU layers:
 - PE blocks for matrix multiplication
 - > ACT blocks for activation functions implementation as piece-wise linear approximations
 - ADD, MUL blocks: point-wise adder and multiplier
 - Sat, Truncation blocks for pruning signal bitwidths

Outline

- 1. Background: FPG-AI Toolflow for CNNs
- 2. Post-training Quantization of GRU Layers
- 3. HW Acceleration for GRU Layers
- 4. Results for FDIR Case Study
- 5. Conclusions

Case Study - Application

- Fault Detection Isolation and Recovery (FDIR) system based on MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) dataset [3]
- MARSIS radar is one of the instruments installed inside the payload of the ESA's mission Mars Express, launched on 2nd June 2003
- > RNN-based models used to forecast temperature values collected by the sensors

Case Study - Models

- > Two GRU-based models analyzed:
 - > 2GRU: few GRU units w/o Dense layer
 - stacked2GRU: more GRU units w/ Dense layer
- Input: temperature measurements
- > Output: predictions on future temperature values
- > Maximum Absolute Error (MAE) used as quality metric

Evaluation and Characterization

Model Compression Results:

Model Architecture	2GRU	stacked2GRU
Floating-point MAE	0.064793	0.046151
Fixed-point MAE	0.076331	0.054003
Quantization Error	0.011538	0.007852
FP Memory Footprint [Mb]	0.117	1.16
FXP Memory Footprint [Mb]	0.018	0.145
Compression Rate	84.5%	87.5%

Towards the Extension of FPG-AI Toolflow to RNN Deployment

Evaluation and Characterization

> Hardware implementation on a Xilinx Kintex Ultrascale KU060:

Model Architecture	LUT	FF	LUTRAM	BRAM	DSP	Frequency [MHz]
2GRU	28390 (8.56%)	10088 (1.52%)	-	-	354 (12.83%)	86.90
stacked2GRU	92482 (27.88%)	42567 (6.42%)	-	-	1170 (42.39%)	72.46

Benchmarking with Nvidia Jetson Nano

		Kintex US XQRKU060	Jetson Nano (5W)	Jetson Nano (MAXN)
Mean Absolute Error	2GRU	0.076331	0.064793	0.064793
	stacked2GRU	0.054003	0.046151	0.046151
Power [W]	2GRU	0.728	2.522	2.918
	stacked2GRU	0.874	2.549	3.121
Inference Time [µs]	2GRU	4.56	833.72	510.74
	stacked2GRU	15.87	1409.25	863.26
Energy per Inference [µJ]	2GRU	3.32	2102.6	1490.3
	stacked2GRU	13.87	3592.2	2694.2
TID [Krad]		100	20	20
SEL [MeV·cm²/mg]		80	N/A	N/A

On-going Development

- Complete the design of an end-to-end flow for RNNs
- Enable the support for <u>NanoXplore technology</u>
 - > Currently implementing a small-size CNN model (LeNet-5) on NanoXplore NG-Ultra FPGA
 - Presentation of preliminary results at «NanoXplore's 5th BRAVE days», 28-29 November, European Space Research and Technology Centre (ESTEC)

NanoXplore

Thank you for your attention!

Tommaso Pacini

Tommaso.pacini@phd.unipi.it

References

[1] T. Pacini, E. Rapuano, L. Fanucci: "FPG-AI: A Technology-Independent Framework for the Automation of CNN Deployment on FPGAs", IEEE ACCESS Journal, March2023

[2] T. Pacini, E. Rapuano, P. Nannipieri, L. Fanucci: "A Technology-Independent Toolflow for Automating AI Deployment on FPGAs for On-board Satellite Applications", 5th SpacE FPGA Users Workshop, March 2023

[3] N. Ferrante, G. Giuffrida, P. Nannipieri, A. Bechini, L. Fanucci: "Fault detection exploiting artificial intelligence in satellite systems", 2nd International Conference on Applied Intelligence and Informatics, Sept 2022

[4] E. Rapuano, T. Pacini, L. Fanucci: "A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms", Hindawi Computational Intelligence and Neuroscience Journal, May 2022

Towards the Extension of FPG-AI Toolflow to RNN Deployment

Model Compression

- > Post-training quantization:
 - Dynamic quantization applied on layers' inputs and weights
 - > Truncation at layers' output for further memory footrpint reduction
 - From floating-point to fixed-point arithmetic for boosting hardware efficiency:
 - > Timing performance
 - > Area consumption
 - Power consumption
- > Layer folding: Batch Normalization, Average Pooling

Design Space Exploration (DSE)

- > DSE inputs:
 - CNN model
 - Target FPGA
 - User's constraints (optional)

- Parameters initial values
- Minimum accuracy
- Maximum inference time
- **Resources limitation**
- Exploration of the architectural parameters space through an iterative algorithm
 - Detailed analytical MDE model for performance and resource estimation
- DSE outputs:
 - MDE configuration file
 - Initialization files for memories
 - Textual debug files (optional)

Modular Deep Learning Engine (MDE)

- High portability: no third-party IPs used
- High scalability in terms of DSP/On-chip Memory utilization
- Easily configurable through a file (.vhd)
 - Model parameters:
 - Input shape, # Layers, Layers type, # Classes, etc.
 - > Quantization parameters:
 - Inputs/weights bitwidths, Truncation and Saturation bits
 - > Architectural parameters:
 - > # MAC units (N_{PE}) , # Neurons, Memory primitives for each IP, etc.

- Implemented resource-sharing strategy within each GRU layer
- Exploiting layer specific dataflow to optimize resource consumption
- Same sequence of operations (e.g. gate units, point-wise operators) repeated in separate time slots
- Design of a control logic that enables the reuse of resources over time
- Achieving resource savings w/o affecting the throughput of the layer

· e esa

Quantization of Activation Functions

> Non-linear activation functions (sigmoid, tanh) computed exploiting a piece-wise linear approximation:

