[ESA EDHPC, France 4/10/2023]

Performance and Radiation Testing of the Coral TPU Co-Processor for AI Onboard Satellites

George Lentaris, (UNIWA & NTUA, GR) V. Leon, C. Sakos, D. Soudris (NTUA, GR) A. Tavoularis, A. Costantino, C. Boatella (ESTEC, NL)

*acknowledgment: M. Bernou (OHB-Hellas, GR)

University of West Attica (UNIWA), Greece Microlab, School of Electrical & Computer Engineering, National Technical University of Athens (NTUA), Greece European Space Research and Technology Centre, European Space Agency (ESA), The Netherlands

work partially supported by ESA OSIP pr. "CAIRS21" (4000135491/21/NL/GLC/ov).)

Contents

- 1. Introduction
- 2. Evaluation Methodology
- 3. Preliminary Results
- 4. Conclusion

INTRODUCTION

AI/ML in space (1/2)

great success on Earth but limited penetration in space flight

• Al market: > \$100B today

• satellites: > 100 new/year

AI/ML in space (1/2)

- great success on Earth but limited penetration in space flight
- increased computational requirements
 - e.g., 1 order of magnitude vs CPU, 2 orders vs traditional rad-hard CPU
- increased programming requirements
 - SW complexity, libraries, frameworks. ++ability to adapt quickly to proliferation of algorithms
 - ...also qualification/reliability aspects (not in this talk)

Al/ML in space (1/2)

- great success on Earth but limited penetration in space flight
- increased computational requirements
 - e.g., 1 order of magnitude vs CPU, 2 orders vs traditional rad-hard CPU
- increased programming requirements
 - SW complexity, libraries, frameworks. ++ability to adapt quickly to proliferation of algorithms
 - ...also qualification/reliability aspects (not in this talk)
- solution: COTS HW+SW in mixed-criticality avionics architectures

- Al market: > \$100B today
- satellites: > 100 new/year

Al/ML in space (2/2)

EDHPC 2023

G. Lentaris

UNIWA & NTUA,

many potential use cases, especially in less critical tasks

- cloud detection (Earth Observation)
 - avoid downloading/storing useless pixels

AI/ML in space (2/2)

many potential use cases, especially in less critical tasks

- cloud detection (Earth Observation)
 - avoid downloading/storing useless pixels
- object detection (Earth Observation)
 - e.g., find pirate ships/fisheries, oil spills, dangerous icebergs, forest fires, ...

AI/ML in space (2/2)

many potential use cases, especially in less critical tasks

- cloud detection (Earth Observation)
 - avoid downloading/storing useless pixels
- object detection (Earth Observation)
 - e.g., find pirate ships/fisheries, oil spills, dangerous icebergs, forest fires, ...
- terrain classification (EO, explorers), e.g., during autonomous Mars rover navigation, ...

AI/ML in space (2/2)

many potential use cases, especially in less critical tasks

- cloud detection (Earth Observation)
 - avoid downloading/storing useless pixels
- object detection (Earth Observation)
 - e.g., find pirate ships/fisheries, oil spills, dangerous icebergs, forest fires, ...
- terrain classification (EO, explorers), e.g., during autonomous Mars rover navigation, ...
- anomaly detection, e.g., automatic satellite housekeeping (monitor vital signals), ...
- pose estimation of satellites, e.g., for non-cooperative in-orbit servicing (docking)
- image super-resolution via GAN, scene change detection, AI to configure telecom,...

Candidate chip: Coral TPU (Google)

co-processor for AI tasks on Earth (....IoT, low-power,...)

advertised as complete HW+SW toolkit

Dev Boards @ NTUA

G. Lentaris

Candidate chip: Coral TPU (Google)

co-processor for AI tasks on Earth (....IoT, low-power,...)

- advertised as complete HW+SW toolkit
- SW = framework, from Python-TF to binary
 - almost press-button ⇒ huge pool of potential users
- HW= 64x64 systolic array of MULT-ADD
 - chip placed next to CPU, e.g., ARM A53 w/ USB2.0

G. Lentaris

Candidate chip: Coral TPU (Google)

co-processor for AI tasks on Earth (...IoT, low-power,...)

- advertised as complete HW+SW toolkit
- SW = framework, from Python-TF to binary
 - almost press-button \Rightarrow huge pool of potential users
- HW= 64x64 systolic array of MULT-ADD
 - chip placed next to CPU, e.g., ARM A53 w/ USB2.0

• is it good for AI in space?

- performance? programmability? test...
- radiation tolerance? mitigations? test...

G. Lentaris

W/TOPS

= 0.5

METHODOLOGY

Performance-Productivity

- survey of literature/public sources
- extensive hands-on benchmarking
 - Al networks (high-level)
 - TF operations (low-level)

comparisons to competitive devices

- FPGA (Zynq)
- VPU (Myriad2/X)
- GPU (Jetson Nano)
- CPU (ARM A₅₃)

Performance-Productivity

- survey of literature/public sources
- extensive hands-on benchmarking
 - Al networks (high-level)
 - TF operations (low-level)

comparisons to competitive devices

- FPGA (Zynq)
- VPU (Myriad2/X)
- GPU (Jetson Nano)
- CPU (ARM A₅₃)

combine all into 1 methodology

- involve multiple users/developers
- move gradually from generic to specific
 - from black- to white-box testing
 - ubiquitous AI to custom AI (for space)
 - high-level to detailed comparison
- output = trade-off analysis, pros-cons

Radiation Testing

TID and SEE

- targeting confident results with limited budget (not full compliance to standards)
- test parameters/plan based on experience and ESCC guidelines
 - focus on LEO environment
- execute AI/benchmarks during irradiation (CNN, mult,...)
 - diversify functions, localize errors, assess criticality

Algorithm 1 Radiation Test SW (Benchmarking & Sampling) Initialize: connect to all DUTs, load code & golden data to RAM **TakeSample**: log idle *I-V*, do *BENCHMARK()*, log active *I-V* **procedure** BENCHMARK(PU) $// PU = \{ARM, TPU\}$ for 1 to N do // arbitrary num. of iterations for 1 to 3 do // TMR ("sparse" temporal) for $f \leftarrow 1$ to 3 do // $f = \{MULT, MATM, CLAS\}$ for 1 to 3 do // TMR ("dense" temporal) execute f-th function on PU, store output end for print f's Execution Time verify on ARM all f's outputs if (errors) : log input+output data, send to host PC end for end for compare on ARM the sparse temporal outputs of each fif (errors) : log input+output data, send to host PC for 1 to 3 do // TMR ("dense" temporal) execute DETE function on PU, store output end for print DETE's Execution Time verify on ARM all DETE's outputs if (errors) : log input+output data, send to host PC end for send golden data to host PC for data integrity check end procedure

Radiation Testing

TID and SEE

- targeting confident results with limited budget (not full compliance to standards)
- test parameters/plan based on experience and ESCC guidelines
 - focus on LEO environment
- execute AI/benchmarks during irradiation (CNN, mult,...)
 - diversify functions, localize errors, assess criticality
- DUT=TPU on DevBoard, 5+1 COTS boards
 - focus on digital TPU chip (not PCB)
 - regular monitoring via laptop+PSU

Algorithm 1 Radiation Test SW (Benchmarking & Sampling)

Initialize: connect to all DUTs, load code & golden data to RAM TakeSample: log idle *I-V*, do *BENCHMARK()*, log active *I-V*

procedure BENCHMARK(PU) $// PU = \{ARM, TPU\}$ for 1 to N do // arbitrary num. of iterations for 1 to 3 do // TMR ("sparse" temporal) // $f = \{MULT, MATM, CLAS\}$ for $f \leftarrow 1$ to 3 do for 1 to 3 do // TMR ("dense" temporal) execute f-th function on PU, store output end for print f's Execution Time verify on ARM all f's outputs if (errors) : log input+output data, send to host PC end for end for compare on ARM the sparse temporal outputs of each fif (errors) : log input+output data, send to host PC for 1 to 3 do // TMR ("dense" temporal) execute DETE function on PU, store output end for print DETE's Execution Time verify on ARM all DETE's outputs if (errors) : log input+output data, send to host PC end for send golden data to host PC for data integrity check end procedure

Radiation Testing

TID and SEE

- targeting confident results with limited budget (not full compliance to standards)
- test parameters/plan based on experience and ESCC guidelines
 - focus on LEO environment
- execute AI/benchmarks during irradiation (CNN, mult,...)
 - diversify functions, localize errors, assess criticality
- DUT=TPU on DevBoard, 5+1 COTS boards
 - focus on digital TPU chip (not PCB)
 - regular monitoring via laptop+PSU

TID: Co-6o facility at ESTEC (NL)

- 340 rad(Si)/hour, 1 week \Rightarrow 50K rad TID
- diverse shielding, no power cycling

SEE: protons, PIF facility at PSI (CH)

- energy 16-200 MeV, flux 1–62·10⁷ p/cm²/s, fluence 10¹² p/cm²
- beam 1x1cm² (center @ TPU package), 10's of power cycles

Algorithm 1 Radiation Test SW (Benchmarking & Sampling)

Initialize: connect to all DUTs, load code & golden data to RAM TakeSample: log idle *I-V*, do *BENCHMARK()*, log active *I-V*

RESULTS (preliminary)

Productivity-Support

TPU = easiest acceleration of AI/ML

- practically, do TensorFlow + quantization
- we developed various demos, sufficient accuracy

TPU ship detection

TPU cloud segmentation

TPU pose estimation

Productivity-Support

TPU = easiest acceleration of AI/ML

- practically, do TensorFlow + quantization
- we developed various demos, sufficient accuracy

but with considerable limitations

- supports only certain layers/ops (TFLite)
 - e.g., no acceleration of classical DSP
 - e.g., not good for new/weird AI
- has limited 8-bit accuracy
 - e.g., not good for LSTMs
- accelerates only inference
 - e.g., no training (federated, transfer learn?)
- no low-level coding
 - e.g., little opportunities for error mitigation

TPU ship detection

TPU cloud segmentation

TPU pose estimation

Benchmarks

Performance

TPU Coral = most efficient chip for mid-sized CNN & MLP

- i.e., for majority of embedded AI that need acceleration
- but, must keep model size <7.6MB (else uses off-chip memory), latency overhead o.3msec
- for bigger nets results vary, e.g., TPU similar or 2x worse vs GPU/VPU (Incept.v4, ResNet-50)

power

1.5W for chip (5W for board), e.g., like VPU but with 10x performance/watt

speed

- 2x-100x vs ARM-Axx
- 10x vs small GPU/VPU
- 2x vs mid-sized FPGA

Mult-Add, LSTM, FullyConnected MLP, MNIST, CIFAR, SHIPNET, Inception, Mobilenet, Mobilenet SSD, Pose ResNet 50, EfficientDet Lite 3, DeepLab, Yolo, ...

TPU speedup workload	vs ARMa53@1.5G	vs MyriadX (USB+PC)	vs JetNano GPU	vs Zynq FPGA
MLP (low)	0.1–0.5x	7х	4x	1x
RNN (mid)	2–3x		X	1x
CNN (low)	2–5x	1x	5x	0.2x
MLP (mid)	5–20x	5-10x	10–20x	1-4x
CNN (mid)	20–60x	10x	8x	2x
CNN (high)	5–25x	1.5-0.5x	1–0.25x	1–0.5x

"mid" workload = 10-1000msec for CNN, 1-10msec for MLP (on ARMa53@1.5GHz)

Radiation, **TID test**

~50 Krad(Si) → digital TPU still OK

- all 3 chips operated correctly throughout the test (139+ hours, 40+ runs per DUT)
 - zero errors, constant performance
- small current increase on unshielded PCB
 - 9%, attributed to analogues of PCB

(a) Avg. execution time on TPU (object detection benchmark)

(b) Current during processing (for entire PCB, supply=5V)

Radiation, TID test

~50 Krad(Si) → digital TPU still OK

- all 3 chips operated correctly throughout the test (139+ hours, 40+ runs per DUT)
 - zero errors, constant performance
- small current increase on unshielded PCB
 - 9%, attributed to analogues of PCB
- two poorly-shielded PCBs became inoperable after first power cycle, at 47Krad
 - well-shielded went 51Krad (2.7Krad/h)
- digital parts didn't reach breaking point!
 - TPU, ARM-A₅₃, DDR, eMMC
 - failures attributed to analogue + USB
- annealing + aging test (7-day @ 75°C)
 - DUTs still good
 - failed USB restored
 - 30-50% less throughput (DVFS?)

(a) Avg. execution time on TPU (object detection benchmark)

(b) Current during processing (for entire PCB, supply=5V)

Radiation, SEE test

- TPU no hard-errors / latch-ups
- SEFIs due to DevBoard / CPU
 - always corrected via reboot
- SEU corrected by TPU reprog.
 - occur mainly in onchip mem/cache of TPU, not in its systolic array

increased SDC cross-section

- especially for bigger AI models
- 10⁻⁸ to 10⁻⁹ cm² (or 10⁻¹⁰ at 30MeV)

decreased error magnitude

 vast majority of upsets are negligible for the AI (90-97%)

TID result partially confirmed

- even with 10's of power cycles
- DUT₄ lost connection at 30Krad
 - attributed to USB, restored after months room temp (unbiased)

CONCLUSIONS

Conclusion

- TPU most efficient and user-friendly ASIP for mid-sized CNN & MLP
- but has limitations w.r.t. supported SW/ops (use-cases)
- promising TID results
- increased SEE sensitivity to protons
 - but decreased importance for AI (!)
 - no hard-errors (heavy-ions test still needed)
- e.g., looks good for missions up to 800Km (OMERE simulations)

Thank you! Q&A

George Lentaris glentaris@microlab.ntua.gr glentaris@uniwa.gr