

TRADEOFF BETWEEN PERFORMANCE AND RELIABILITY IN FPGA ACCELERATED DNNS FOR SPACE APPLICATIONS

Ioanna SOUVATZOGLOU* | **Dimitris AGIAKATSIKAS** * | Aitzan SARI* | Vasileios VLAGKOULIS* | Antonios TAVOULARIS** | Mihalis PSARAKIS*

*UNIVERSITY OF PIRAEUS, ** EUROPEAN SPACE AGENCY

EUROPEAN DATA HANDLING & DATA PROCESSING CONFERENCE – EDHPC 2023

INTRODUCTION

FPGA IS SPACE EXAMPLE \rightarrow ESA SENTINEL 2 MISSION

58% of all computing platforms are FPGAs compared to ASICs, Std. ASICs and Microprocessors

3

Trends and patterns in ASIC and FPGA use in space missions and impact in technology roadmaps of the European Space Agency, Roger Boada Gardenyes, Master Thesis, T. U. Delft and ESA, 15th August 2012

QUANTIZED NEURAL NETWORKS

- Approximate representation of data (on activations/weights)
- Binarized Neural Networks
 - 1-bit for Activation
 - 1-bit for Weights
- (+)Suitable for FPGAs
- (+)Consume less power
- (-)Slight degradation in the network accuracy

THE RELIABILITY PROBLEM

COTS SRAM FPGAs are vulnerable SEEs caused by cosmic radiation

Inherently resilient to computational errors

5

DESIGN OPTIMIZATIONS FOR SRAM FPGA NNs

- Multiple optimizations for high demanding application (e.g., space applications):
 - Approximate computing
 - Approximate Adders/Multipliers
 - Quantization/Binarization
 - Int16,1nt8,2-bit,1-bit Data representation of Weights/activations
 - Architecture optimizations
 - Parallelization/Folding of the Design
- In this work we investigate the effect of the folding parameter on the reliability and the performance of a binarized neural network

RELIABILITY VS DESIGN PARAMETERS (FOLDING)

- The folding design parameter indicates the level of parallelization
- When increasing the no. of PEs:
 - more resources are used
 - more neurons are active per cycle
 - reduces the classification execution time
- Example: 64 neurons:
 - Max. folding: I PEs \rightarrow 64 cycles per neuron operation
 - Med. folding; 8 PEs \rightarrow 8 cycles per neuron operation
 - Min. folding: 32 PEs \rightarrow 2 cycles per neuron operation

CASE STUDY: FINN

- FPGA Neural Network Accelerator
- Automated design flow
- Customized architectures for different network topologies
 - Fully Connected, Convolutional, Pooling
 - Wide range of data precisions
 - Performance parameters:
 - PEs, SIMD, folding, FIFOs, Memory components
- Training NN with :
 - Theano

CASE STUDY: BINARIZED NEURAL NETWORK

- Binarized Neural Network BNN
- Generated by FINN
- Fully Connected
- MNIST dataset
- Customizable Processing Elements and SIMD

Predictions

FOLDING: AREA VS PERFORMANCE

- 3 Designs (Max,Med,Min)
- Different no. of Processing Elements
- Execution Time [uS]:
 - Max. folding 21.4
 - Med. folding 2.16
 - Min. folding 0.88

FAULT INJECTION CAMPAIGN: SETUP

- DUT: FINN MNIST CLASSIFICATION on Zynq-7020
- Opensource FREtZ Framework
 - Bitstream manipulation
 - Fault injection
 - Read/Write configuration memory
- Fault Injection Accelerator:
 - JTAG connection with the DUT
 - Accelerates the fault injection procedure
- Fault Model
 - SBU in the essential configuration bits
 - FPGA statistical fault injection campaign

11

- Confidence Interval (CI) = 99%
- Margin of error = 0.3%

FAULT INJECTION CAMPAIGN: FLOW

- Statistical Fault injection through JTAG >
 - Extract Essential Bits, through Bitstream Manipulation
 - Divide them per Layer (Constrained placement)
 - Create a Fault List
 - For each Fault in Fault List:
 - I. Synchronize with ARM (Boundary Scan)
 - Read Configuration Frame 2.
 - Bit Flip essential bit of Frame 3.
 - 4. Write Configuration Frame

RELIABILITY ANALYSIS METRICS

Reliability

 $AVF = \frac{\# Critical faults}{\# Bit Flips}$ $\text{MTBF} = \frac{1}{\lambda} = \frac{1}{\text{Ebits} \times \text{AVF} \times \lambda_{\text{CRAM}}}$

Reliability & Performance

MTBF

 $MEBF = \frac{MTBF}{Mean classification time per image}$

FAULT INJECTION CAMPAIGN RESULTS & AVF

Folding	Bits		Failure Rates [%]						
	Essential Bits	Upsets injected	Layers	Tolerable	Total Failures	Crashes	Critical	Zeroes	AVF
Max.	684666	145211	Overall	3.86	3.76	2.79	0.62	0.35	3.755E-02
			0	1.76	1.93	1.44	0.26	0.23	1.925E-02
			I	0.6	0.76	0.57	0.14	0.05	7.623E-03
			2	0.75	0.69	0.52	0.13	0.04	6.852E-03
			3	0.75	0.38	0.27	0.09	0.02	3.829E-03
Med.	1289901	161258	Overall	7.29	1.72	0.84	0.72	0.16	I.720E-02
			0	3.76	1.05	0.50	0.44	0.11	1.053E-02
			I	0.74	0.23	0.13	0.08	0.02	2.270E-03
			2	1.1	0.22	0.13	0.07	0.02	2.096E-03
			3	1.69	0.23	0.08	0.14	0.01	2.301E-03
Min.	2220495	170174	Overall	6.88	1.36	0.66	0.55	0.15	1.371E-02
			0	3.57	0.82	0.38	0.34	0.10	8.262E-03
			I	0.93	0.2	0.11	0.07	0.02	1.992E-03
			2	1.39	0.21	0.11	0.08	0.02	2.104E-03
			3	0.99	0.14	0.05	0.07	0.02	1.352E-03

Folding Max \rightarrow Min

- Essential bits increase
- AVF decreases

Per layer analysis

Layer 0 most vulnerable

RELIABILITY METRICS: MTBF & MEBF

Assuming 4.48 upsets/device/day as for a mission in Low Earth Orbit (404 km perigee, 407 km apogee and 51.64°)

SELECTIVE TMR - LAYERO: MTBF

Folding (PEs * SIMDs)

MTBF with Selective TMR :

- ~x2.5 times better in Med and Min QNN
- ~x2 times better in Max QNN

SELECTIVE TMR - LAYER0 : MEBF

Selective TMR lead to ~x2 Times Better MEBF in every QNN

CONCLUSION

- For highest MEBF \rightarrow Highest parallelization
- For highest MTBF \rightarrow Need design exploration of the folding factor

THIS PRESENTATION AND RECORDING BELONG TO THE AUTHORS. NO DISTRIBUTION IS ALLOWED WITHOUT THE AUTHORS' PERMISSION.

THANK YOU

CC Isc

CONTACT INFO: ISOUVATZ@UNIPI.GR

