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INTRODUCTION

Complex

Neural Networks

High performance 

Power/Energy Constrained

Reliable

Space Applications

• Cloud Detection

• Area Exploration
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FPGA IS SPACE

EXAMPLE → ESA SENTINEL 2 MISSION
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Why:

 High performance

 Low non-recurring 

engineering costs 

 Flexibility

Trends and patterns in ASIC and FPGA use in space missions and impact in technology roadmaps of the European Space Agency, Roger Boada Gardenyes, Master Thesis, T. U. Delft and ESA, 

15th August 2012 
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58% of all computing platforms are FPGAs compared to ASICs, Std. ASICs and Microprocessors



QUANTIZED 

NEURAL 

NETWORKS

 Approximate representation of 

data (on activations/weights)

 Binarized Neural Networks

 1-bit for Activation

 1-bit for Weights

 (+)Suitable for FPGAs

 (+)Consume less power 

 (-)Slight degradation in the 

network accuracy

STANDAR NEURAL 

NETWORK

BINARIZED 

NEURAL 

NETWORK
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THE RELIABILITY PROBLEM
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COTS SRAM FPGAs are vulnerable SEEs caused by cosmic 

radiation

Inherently resilient to computational errors



DESIGN OPTIMIZATIONS FOR SRAM FPGA NNs

 Multiple optimizations for high demanding application (e.g., space applications):

 Approximate computing 

 Approximate Adders/Multipliers

 Quantization/Binarization 

 Int16,1nt8,2-bit,1-bit Data representation of  Weights/activations

 Architecture optimizations

 Parallelization/Folding of the Design

 In this work we investigate the effect of the folding parameter on the 

reliability and the performance of a binarized neural network
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RELIABILITY VS DESIGN PARAMETERS (FOLDING)

 The folding design parameter indicates the level of 
parallelization

 When increasing the no. of PEs:

 more resources are used

 more neurons are active per cycle 

 reduces the classification execution time

 Example:  64 neurons:

 Max. folding: 1 PEs → 64 cycles per neuron operation 

 Med. folding; 8 PEs → 8 cycles per neuron operation 

 Min. folding: 32 PEs → 2 cycles per neuron operation  
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CASE STUDY: FINN

 FPGA Neural Network Accelerator  

 Automated design flow

 Customized architectures for different network 

topologies

 Fully Connected, Convolutional, Pooling

 Wide range of data precisions 

 Performance parameters: 

 PEs, SIMD, folding, FIFOs, Memory components 

 Training NN with :

 Theano[*] Umuroglu, Yaman, et al. "Finn: A framework for fast, scalable binarized neural network 

inference." Proc. of the ACM/SIGDA Intl. Symp. on Field-Programmable Gate Arrays. 2017.
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CASE STUDY: BINARIZED 
NEURAL NETWORK

 Binarized Neural Network – BNN

 Generated by FINN

 Fully Connected 

 MNIST dataset

 Customizable Processing Elements 

and SIMD
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FOLDING: AREA VS 
PERFORMANCE

 3 Designs 

(Max,Med,Min)

 Different no. of 

Processing Elements

 Execution Time [uS]:

 Max. folding - 21.4

 Med. folding - 2.16

 Min. folding  - 0.88
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FAULT INJECTION CAMPAIGN: SETUP

 DUT: FINN MNIST CLASSIFICATION on Zynq-7020

 Opensource FREtZ  Framework

 Bitstream manipulation 

 Fault injection

 Read/Write configuration memory

 Fault Injection Accelerator:

 JTAG connection with the DUT

 Accelerates the fault injection procedure

 Fault Model

 SBU in the essential configuration bits

 FPGA statistical fault injection campaign

 Confidence Interval (CI)  = 99%

 Margin of error = 0.3%
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FAULT INJECTION CAMPAIGN: FLOW 

➢ Statistical Fault injection through JTAG 

 Extract Essential Bits, through Bitstream Manipulation

 Divide them per Layer (Constrained placement)

 Create a Fault List

 For each Fault in Fault List:

1. Synchronize with ARM (Boundary Scan)

2. Read Configuration Frame

3. Bit Flip essential bit of Frame

4. Write Configuration Frame

Bit flips injected 

only in the layers 

of the NN
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RELIABILITY ANALYSIS METRICS 

Reliability Reliability & Performance
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FAULT INJECTION CAMPAIGN RESULTS & AVF

Folding

Bits Failure Rates [%]

AVF
Essential Bits Upsets injected Layers Tolerable

Total 
Failures

Crashes Critical Zeroes

Max. 684666 145211

Overall 3.86 3.76 2.79 0.62 0.35 3.755E-02

0 1.76 1.93 1.44 0.26 0.23 1.925E-02

1 0.6 0.76 0.57 0.14 0.05 7.623E-03

2 0.75 0.69 0.52 0.13 0.04 6.852E-03

3 0.75 0.38 0.27 0.09 0.02 3.829E-03

Med. 1289901 161258

Overall 7.29 1.72 0.84 0.72 0.16 1.720E-02

0 3.76 1.05 0.50 0.44 0.11 1.053E-02

1 0.74 0.23 0.13 0.08 0.02 2.270E-03

2 1.1 0.22 0.13 0.07 0.02 2.096E-03

3 1.69 0.23 0.08 0.14 0.01 2.301E-03

Min. 2220495 170174

Overall 6.88 1.36 0.66 0.55 0.15 1.371E-02

0 3.57 0.82 0.38 0.34 0.10 8.262E-03

1 0.93 0.2 0.11 0.07 0.02 1.992E-03

2 1.39 0.21 0.11 0.08 0.02 2.104E-03

3 0.99 0.14 0.05 0.07 0.02 1.352E-03

Folding Max → Min

▪ Essential bits increase

▪ AVF decreases 

Per layer analysis

▪ Layer 0 most vulnerable
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RELIABILITY METRICS: MTBF & MEBF

Assuming 4.48 upsets/device/day as for a mission in Low Earth Orbit (404 km perigee, 407 km apogee and 51.64°)

Max. Med. Min.
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Ebits = 685Kbit, 

AVF = 3.755E-02

Exec = 21.4uS

Ebits = 1,290Kbit, 

AVF = 1.720E-02

Exec = 2.16uS

Ebits = 2,220Kbit, 

AVF = 1.371E-02

Exec = 0.88uS



SELECTIVE TMR - LAYER0: MTBF

MTBF with Selective TMR :

▪ ~x2.5 times better in Med and Min QNN 

▪ ~x2 times better  in Max QNN
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Max. Med. Min.



SELECTIVE TMR - LAYER0 : MEBF

▪ Selective TMR lead to ~x2 Times Better MEBF in every QNN

Max. Med. Min.
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CONCLUSION

 For highest MEBF → Highest parallelization 

 For highest MTBF→ Need design exploration of the folding factor
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