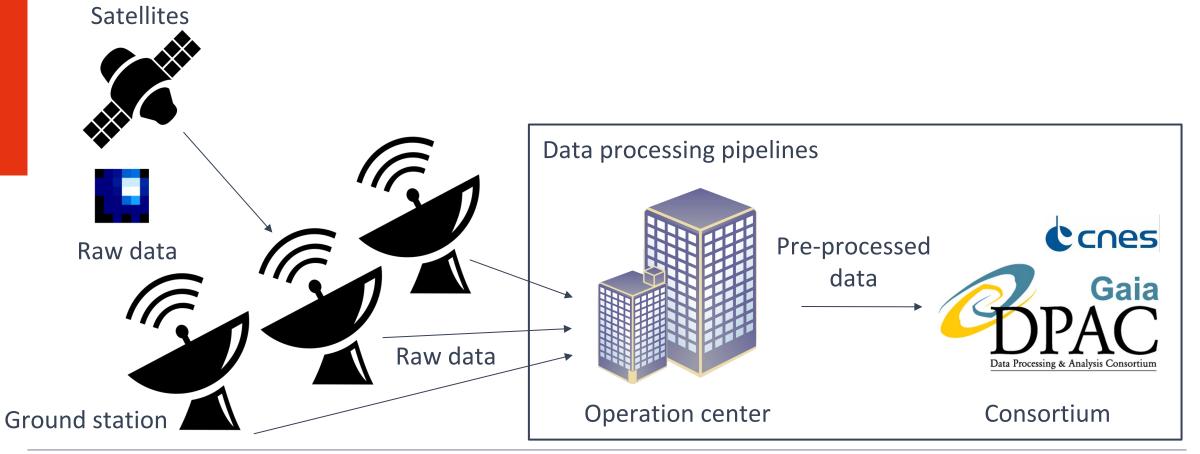
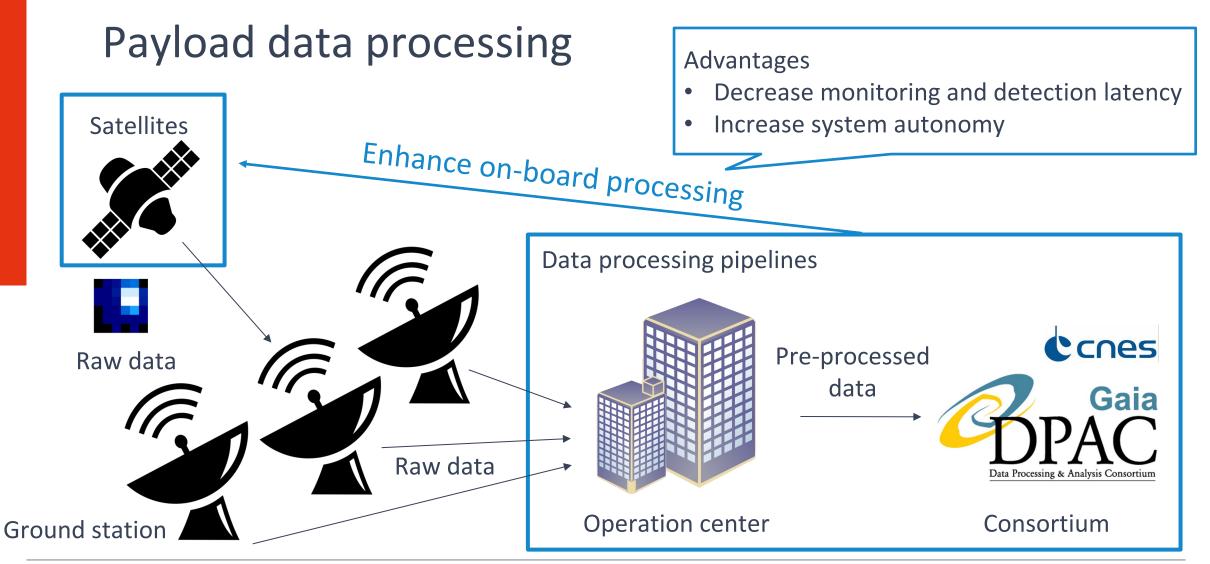
EDHPC 2023 European Data Handling & Data Processing Conference for Space 2 - 6 October 2023 | Juan-Les-Pins | France

High-Level Synthesis (HLS)-Based On-board Payload Data Processing considering the Roofline Model

Seungah Lee, Ruben Salvador, Angeliki Kritikakou, Olivier Sentieys, Julien Galizzi, and Emmanuel Casseau

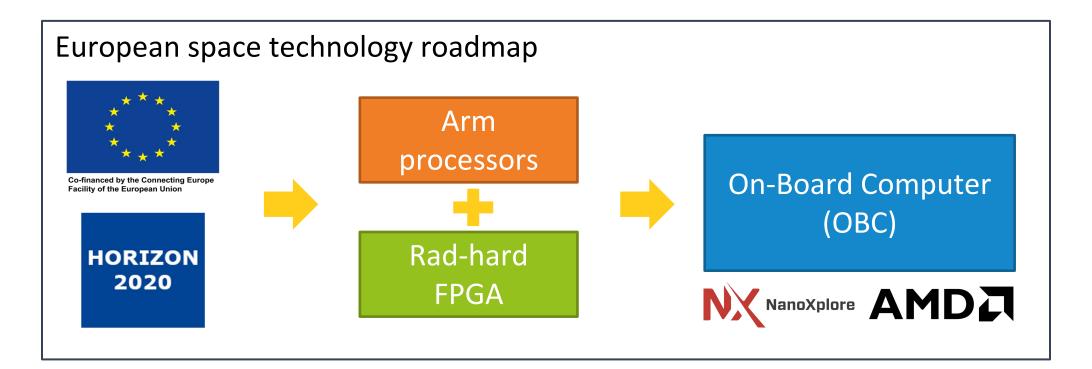



Payload data processing

[1] Gaia Collaboration, "The Gaia mission," A&A, vol. 595, p. A1, Nov. 2016.

[1] Gaia Collaboration, "The Gaia mission," A&A, vol. 595, p. A1, Nov. 2016.

Current data processing hardware


- Processing hardware
 - Frontgrade LEON processors and Microsemi FPGA

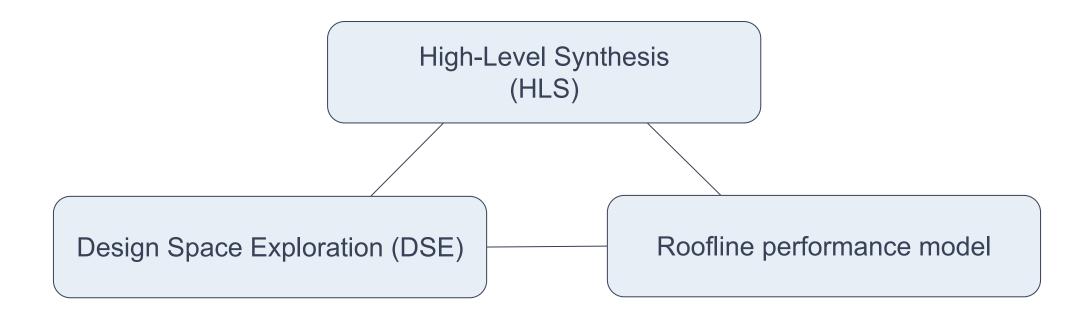
Mission	Launch year	Payload data processing hardware	Reference
		GR712RC LEON3FT ASIC,	
Plato	2026*	26* MDPA LEON2FT ASIC,	
		LEON3FT with RTAX2000 FPGA	
JUICE	2023	GR712RC LEON3FT ASIC	[3]
Solar Orbiter	2020	LEON3FT with RTAX4000 FPGA	[4]
Cheops	2019	GR712RC LEON3FT ASIC	[5]
BepiColombo	2018	HIREC-MIPS-HR5000 CPU, RTAX2000 FPGA	[6]
Gaia	2013	Custom pre-processing board, SCS750 PowerPC board	[7]

*Estimated launch schedule

Future data processing hardware

Research focus: FPGA design based on High-Level Synthesis (HLS)

Space science algorithms

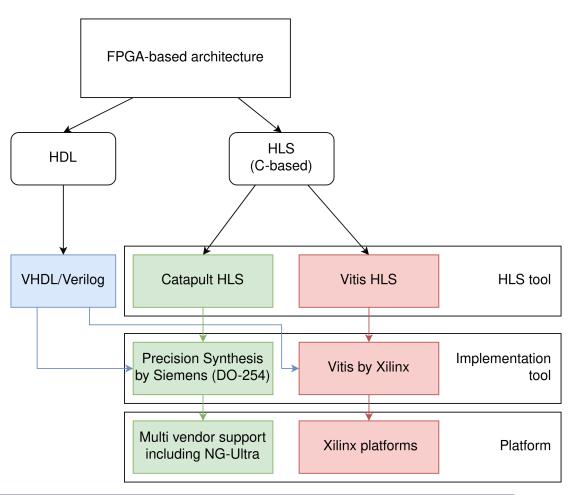

	Classification	Sub-classification	Nb. of users
	Fourier transform	FFT, IFFT, DFT	5
l'Observatoire	Filter	IIR	4
de Paris		CIC	4
Survey results from		Kalman	1
payload teams	Comprossion	CCSDS 121	3
Irène Joliot-Curie		CCSDS 122	3
Laboratoire de Physique des 2 Infinis	Compression	CCSDS 123	3
des 2 Infinis		CCSDS 124	3
	Optimization	Interpolation	3
		Fitting and correlation	2
CNIS		Gradient descent	2
LPC2E	Histogram		1
	Digital Elevation Model		1

Selected key algorithm: 2-Dimensional Fast Fourier Transform (2-D FFT)

Optimization methodology

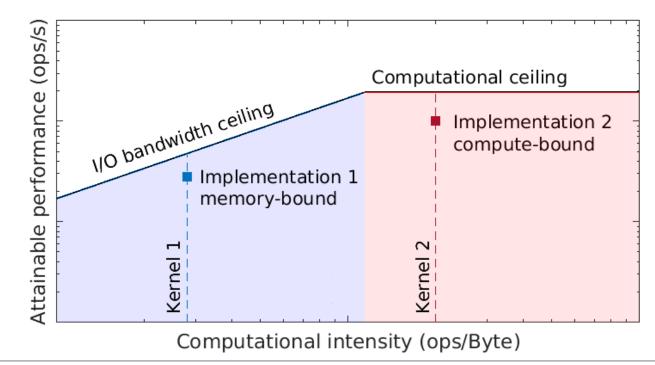
- High-Level Synthesis (HLS)-based hardware acceleration architectures
 - Combination of Design Space Exploration (DSE) and the roofline model [8]

[8] M. Siracusa et al., "A Comprehensive Methodology to Optimize FPGA Designs via the Roofline Model," IEEE Trans Comput, vol. 71, no. 8, pp. 1903–1915, Aug. 2022


EDHPC 2023: High-Level Synthesis(HLS)-Based On-board Payload Data Processing considering the Roofline Model, Lee et al,

High-Level Synthesis (HLS)

- HLS: refactor C/C++ using pragmas and directives
- Tools: Vitis HLS, Catapult HLS, Bambu HLS...
- Advantages
 - Generate architectures faster and efficiently
 - Adaptive to missions and design reviews
 - For payload teams with limited HDL experts


Optimization type	Vitis HLS pragmas
Loop unrolling	#pragma HLS unroll
Loop pipelining	#pragma HLS pipeline
Task pipelining	#pragma HLS dataflow
Array partitioning	#pragma HLS array_partition

Roofline performance model

- Characterize designs using the limits of bandwidth and performance on a given architecture [9].
- Originally appropriate to multicore CPUs and GPUs, but extended to FPGAs.
- The FPGA roofline model shall consider the reconfigurable characteristics of FPGA [10].

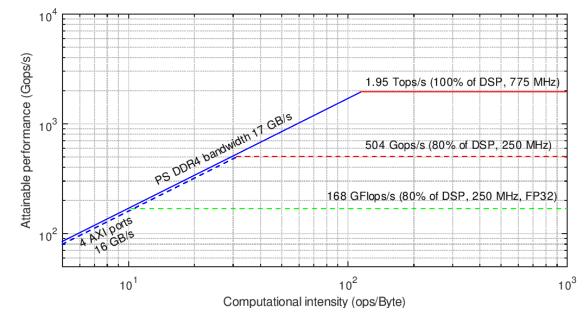
Use case: 2-D FFT

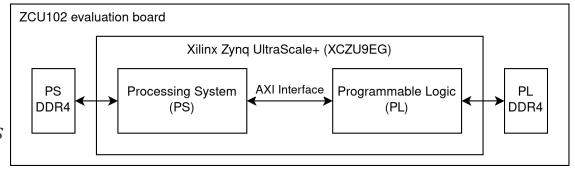
• Algorithm requirements

Item	Description	Note	
Algorithm	2-D FFT	SVOM ECLAIRs payload [11]	
FFT size	200 × 200 (256 × 256)		
Data type	Single-precision floating point (FP32)		
Execution time	< 100 ms		

• FPGA platform specifications

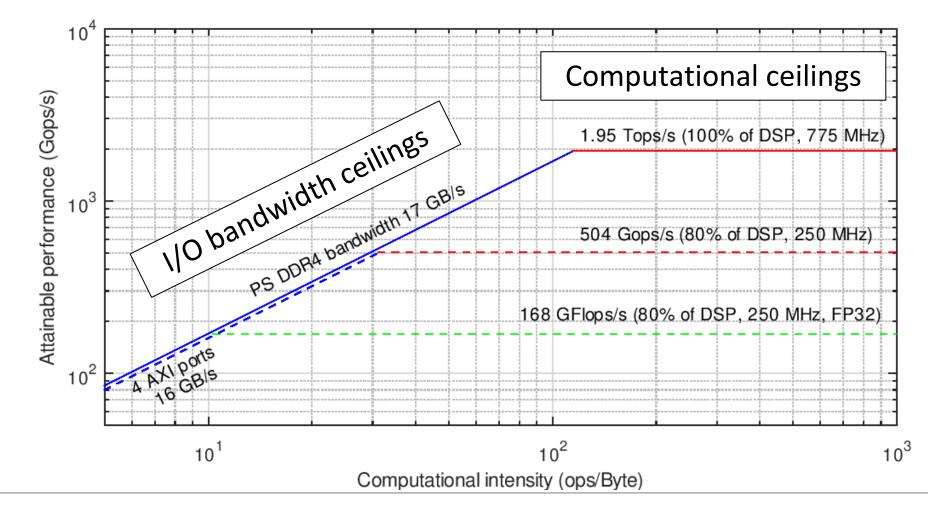
Item	Description	Note
Digital Signal Processing (DSP) blocks	2520 blocks (DSP48E2) Multiplier input: 27 $ imes$ 18 bit	Xilinx Zynq UltraScale+ (XCZU9EG) embedded FPGA
Block RAM (BRAM)	32.1 Mb	
Interface	Advanced eXtensible Interface (AXI)	


Theoretical FPGA roofline model

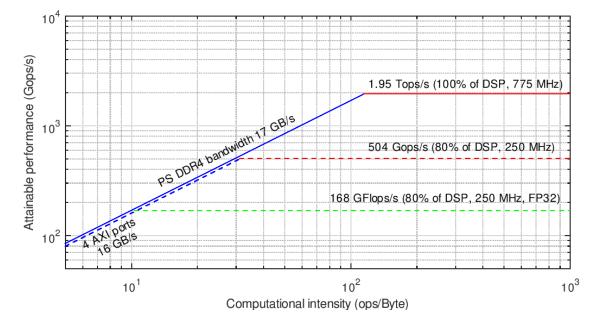

• Computational ceilings (C)

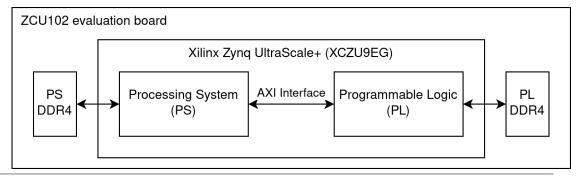
 $C = \frac{available \, DSP \, blocks \times clock \, frequency}{required \, DSP \, blocks \, per \, operation}$

- DSP blocks per operation (DSP48E2)
 - 27-bit data: 1 DSP block per multiplication
 - FP32 data: 3 DSP blocks per FP multiplication
- I/O Bandwidth ceiling (BW)


 $BW = min(BW_{PS_DDR4}, BW_{AXI})$ $BW_{PS_DDR4} = DDR4 \ transfer \ rate \times DDR4 \ width$ $BW_{AXI} = clk \ freq. \times transfer \ data \ bitwidth \times ports$

Theoretical FPGA roofline model

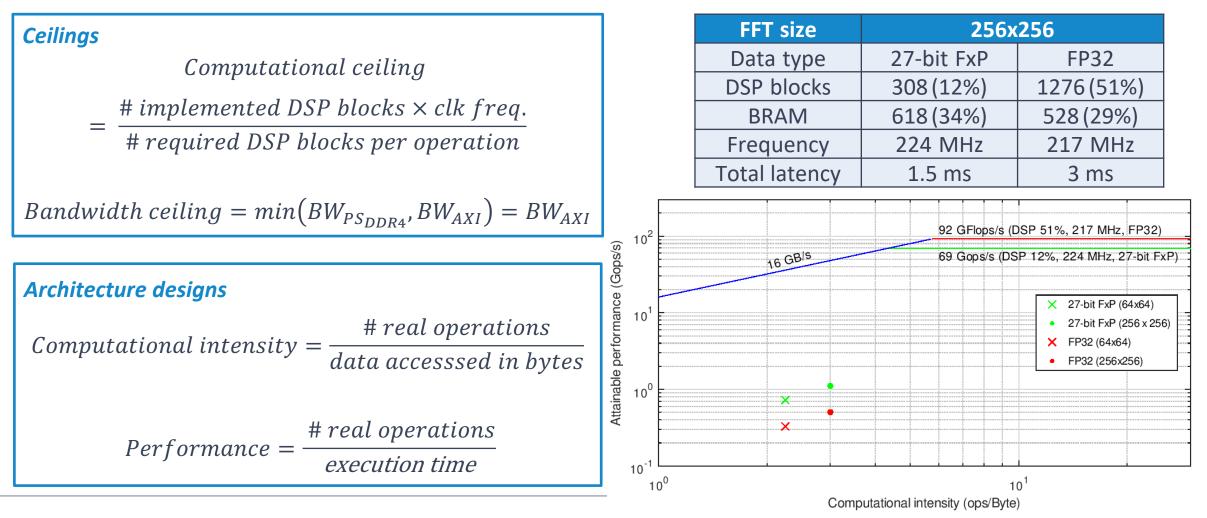

EDHPC 2023: High-Level Synthesis(HLS)-Based On-board Payload Data Processing considering the Roofline Model, Lee et al, 2-6.10.2023, Juan-les-Pins, France


Theoretical FPGA roofline model

- Computational ceilings (C)
 - = available DSP blocks × clock frequency
 - required DSP blocks per operation
- DSP blocks per operation (DSP48E2)
 - 27-bit data: 1 DSP block per multiplication
 - FP32 data: 3 DSP blocks per FP multiplication

 $BW = min(BW_{PS_DDR4}, BW_{AXI})$ $BW_{PS_DDR4} = DDR4 \ transfer \ rate \times DDR4 \ width$ $BW_{AXI} = clk \ freq. \times transfer \ data \ bitwidth \times ports$

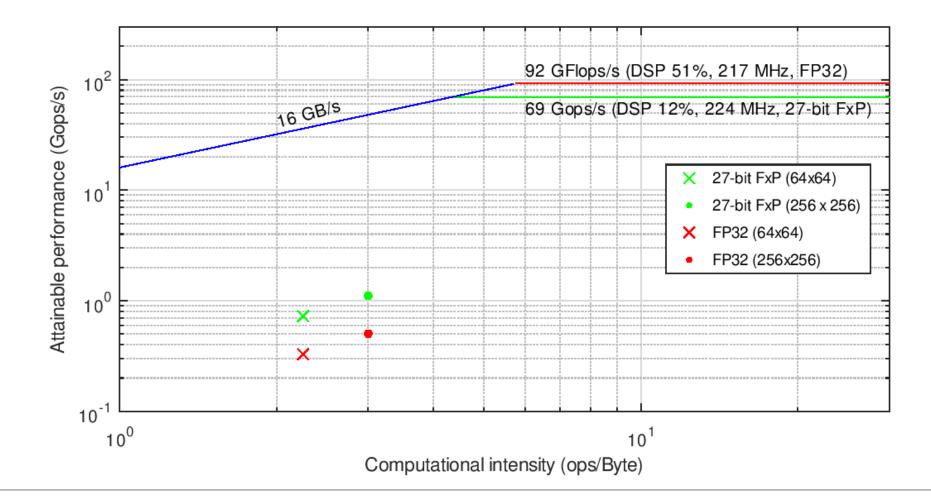
Parallelism and pipelining


- AMD-Xilinx open-source DSP library
 - HLS-based 2-D FFT
- Parallelism and pipelining
 - Loop unrolling combined with array partitioning
 - Loop pipelining and task pipelining
- Optimization (FP32)
 - Reference code: DSP blocks utilization > 100 %
 - Modification: loop pipelining (#pragmas HLS pipeline)
 - Reduction of resource utilization

C synthesis	C/RTL	PTL cynthosis
	Co-simulation	 RTL synthesis

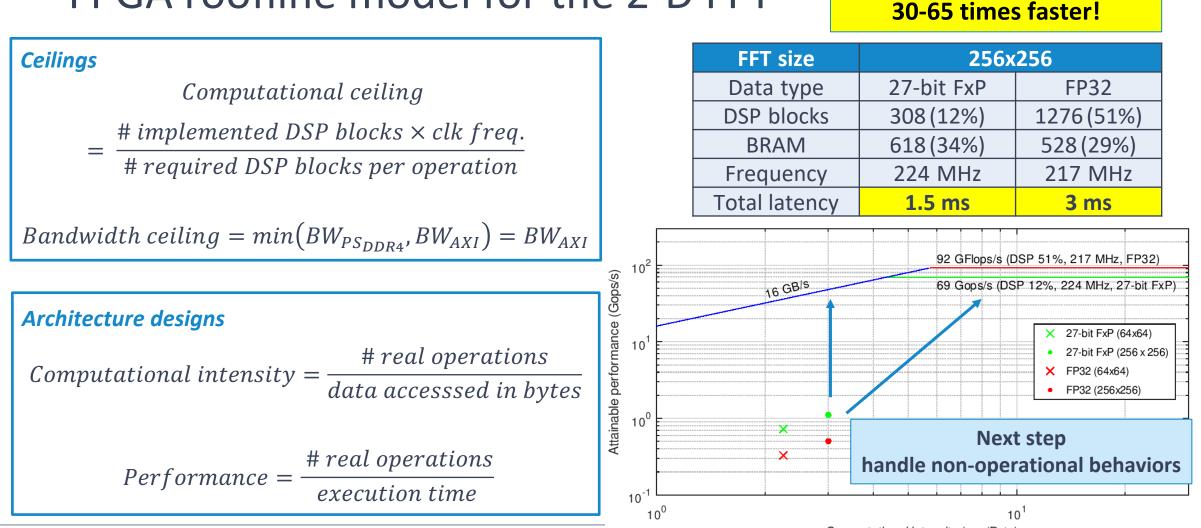
FFT size	64 x 64		256x256	
Data type	27-bit FxP	FP32	27-bit FxP	FP32
DSP blocks	196	928	308	1276
DSP DIOCKS	(7.8%)	(37%)	(12%)	(51%)
	48	32	618	528
BRAM	(2.6%)	(1.8%)	(34%)	(29%)
LUT	58843	109870	89508	157710
	(21%)	(40%)	(33%)	(58%)
FF	82129	199467	103394	262969
	(15%)	(36%)	(19%)	(51%)
Frequency	225 MHz	227 MHz	224 MHz	217 MHz

FPGA roofline model for the 2-D FFT



nría

EDHPC 2023: High-Level Synthesis(HLS)-Based On-board Payload Data Processing considering the Roofline Model, Lee et al,


2-6.10.2023, Juan-les-Pins, France

FPGA roofline model for the 2-D FFT

EDHPC 2023: High-Level Synthesis(HLS)-Based On-board Payload Data Processing considering the Roofline Model, Lee et al, 2-6.10.2023, Juan-les-Pins, France

FPGA roofline model for the 2-D FFT

Computational intensity (ops/Byte)

Time requirement: < 100 ms

nnía

EDHPC 2023: High-Level Synthesis(HLS)-Based On-board Payload Data Processing considering the Roofline Model, Lee et al,

2-6.10.2023, Juan-les-Pins, France

Conclusion

- Analysis of current and future on-board data processing hardware
- Survey on payload data processing algorithms
- Design methodology considering the roofline model with HLS-based DSE
- The 2-D FFT case study: 30-65 faster processing than the algorithm requirement
- On-going work: HW/SW benchmark and roofline model for Zynq UltraScale+ (Arm CPU&FPGA)

Thank you for your attention! Main speaker: **Seungah Lee** (<u>seungah.lee@irisa.fr</u>)

Acknowledgement: this research was supported by CNES and University of Rennes thanks to PhD funding granted to Seungah Lee.

References

[1] Gaia Collaboration, "The Gaia mission," A&A, vol. 595, p. A1, Nov. 2016.

[2] P. Plasson, G. Brusq, F. Singhoff, H. N. Tran, S. Rubini, and P. Dissaux, "PLATO N-DPU on-board software: an ideal candidate for multicore scheduling analysis," in 11th European Congress ERTSS Embedded Real Time Software and System, Toulouse, France, 2022.

[3] F. Torelli, "Common DPU and Basic Software for JUICE Instruments," in European Workshop on On-Board Data Processing (OBDP2019), European Space Research and Technology Centre (ESTEC), Feb. 2019.

[4] M. Maksimovic et al., "The Solar Orbiter Radio and Plasma Waves (RPW) instrument," Astronomy & Astrophysics, vol. 642, p. A12, Oct. 2020.

[5] W. Benz et al., "The CHEOPS mission," Experimental Astronomy, vol. 51, no. 1, pp. 109–151, Feb. 2021.

[6] Y. Kasaba et al., "Mission Data Processor Aboard the BepiColombo Mio Spacecraft: Design and Scientific Operation Concept," Space Science Reviews, vol. 216, no. 3, p. 34, Apr. 2020.

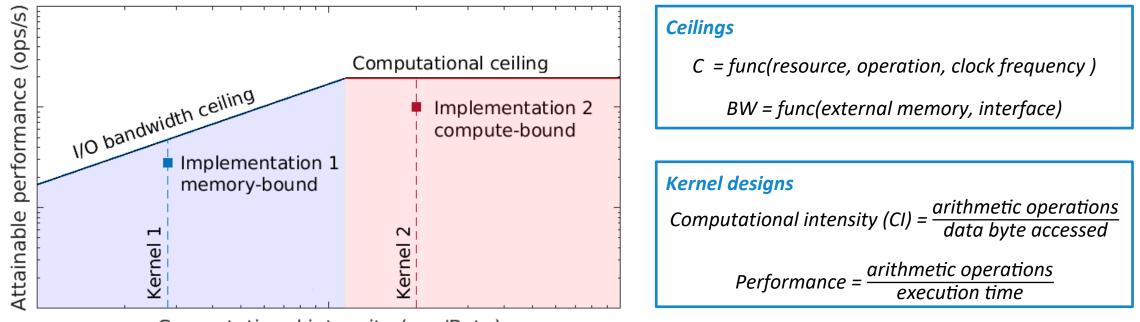
[7] J. H. J. d. Bruijne, M. Allen, S. Azaz, A. Krone-Martins, T. Prod'homme, and D. Hestroffer, "Detecting stars, galaxies, and asteroids with Gaia," Astronomy & Astrophysics, vol. 576, p. A74, Apr. 2015.

[8] M. Siracusa et al., "A Comprehensive Methodology to Optimize FPGA Designs via the Roofline Model," IEEE Trans Comput, vol. 71, no. 8, pp. 1903–1915, Aug. 2022.

[9] S. Williams, A. Waterman, and D. Patterson, "Roofline: an insightful visual performance model for multicore architectures," Communications of the ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[10] B. da Silva Gomes, A. Braeken, E. D'Hollander, and A. Touhafi, "Performance modeling for FPGAs: extending the roofline model with high-level synthesis tools," International Journal of Reconfigurable Computing, vol. 2013, pp. 1–10, 2013.

[11] S. Schanne et al., "A Scientific Trigger Unit for space-based real-time gamma ray burst detection I - Scientific software model and simulations," IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Oct. 2013, pp. 1–5



Appendix

Roofline performance model

- Characterize designs using the limits of bandwidth and performance on a given architecture [9].
- Originally appropriate to multicore CPUs and GPUs, but extended to FPGAs.
- The FPGA roofline model shall consider the reconfigurable characteristics of FPGA [10].

Computational intensity (ops/Byte)

