

COGNITIVE CLOUD COMPUTING IN SPACE

DUAL-CAMERA SATELLITE SYSTEM WITH ON-BOARD AI-BASED DECISION MAKING CAPABILITIES

EDHPC2023, JUAN-LES-PINS, FRANCE 3.10.2023

AGENDA

- Company Presentation
- > Introduction
- Mission Analysis
- Active Fire Detection Demonstration
- Use Case Demonstration Setup
- Evaluation
- Discussion

OHB Hellas provides a <u>scalable and flexible offer</u>

HW implementation

HPDP Sub-system

Software Design and Development

DevOps CI/CD onto specialized data processing HW targets

Independent Software Verification and Validation Program Management, Systems Engineering, Mission Assurance, Procurement

Innovative Space Mission

Integration and Test

End to End quick Demonstration, IOD

Use Case Provider

AI at the Edge

Market Analysis

HW selection & benchmarking

EUROPEAN DATA HANDLING & DATA PROCESSING CONFERENCE FOR SPACE // OHB HELLAS // 2023 // OHB CONFIDENTIAL

HW Acceleration solution

Advanced Space Algorithm

PROPOSED SOLUTION

INTRODUCTION

PROPOSED APPROACH

Objective

 Demonstrate a novel class of mission where imaging with two cameras is controlled by an AI-enabled real-time scheduling mechanism

Approach

- 1st satellite: a low-resolution wide-swath optical camera -> maximum coverage
- 2nd satellite: a high-resolution narrow-swath camera -> maximum spatial resolution
- Target: the best possible image of Area of Interest (AoI).

Team:

- OHB Hellas
 - Project lead
 - System design and analysis
 - Demonstration
- Foundation for Research and Technology Hellas
 - State of the art and Market analysis
 - Cognitive AI software design

MISSION ANALYSIS

TWO-SATELLITE SYSTEM

Two-satellite system, main mission parameters

- Time required:
 - **1. AI** processing
 - 2. satellite attitude change
 - 3. settling
 - defined by the distance between the satellites
- Maximum line-of-sight distance constrained by the ISL capabilities. For example, the Antwerp Space LEO – LEO Ka Band ISL can provide a satellite distance of 4700 km within its specification
- The time available for AI processing and attitude adjustment in this case will be 630 seconds **feasible** for the AI processing and the attitude change + settle time in this context
- The angle between the two satellites will be 0.7 radians or 40°. In terms of Keplerian orbital elements, this translates to a True Anomaly difference of 40°

One camera **large swath** (120Km) and low resolution (30m at 500km orbit) in red

One camera **small swath** (20km) and **High resolution (5m at 500km orbit)** in green

ACTIVE FIRE DETECTION DEMONSTRATION

APPLICATIONS CONSIDERED – OBJECT / TARGET DETECTION

• Floods

Oil spills

• Solar PV parks

• Active fire

 Floating plastic litter (distribution)

Volcanic eruption

VIDEO

https://youtu.be/8mbTV7h6Sj0?si=eEjCHQbgX0zBJh5_

ACTIVE FIRE DETECTION DEMONSTRATION

SELECTED APPLICATION: ACTIVE FIRE DETECTION

- Input: Landsat 8, 3 band: 6(1570nm), 5(850nm), 1(430nm)
- Labels: Manual annotations

de Almeida Pereira, Gabriel Henrique, et al. "Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study." *ISPRS Journal of Photogrammetry and Remote Sensing* 178 (2021): 171-186.s

ACTIVE FIRE DETECTION DEMONSTRATION

SYSTEM OVERVIEW

USE CASE DEMONSTRATION SETUP

SELECTED EMBEDDED DEVICES

- Kria KV260 (Zynq UltraScale FPGA, Neural Network Programmable Engine (DPU)):
 - Demonstrates the <u>scout satellite</u> → Executes the LR network (**ResNet**)
 - Need for model quantization → Xilinx's Vitis-AI
 - Sends the predicted HR tile to the fine-pointing satellite

Coral Dev Board (TPU):

- Demonstrates the <u>fine-pointing satellite</u> \rightarrow Executes the HR network (**Unet**)
- Need for model quantization → TensorFlow Lite Converter
- Finds the segmentation fire mask

USE CASE DEMONSTRATION SETUP

Kria KV260

- The original float model is quantized into INT8 precision to be executed on the DPU
- Then, the quantized version of the model is compiled into an XMODEL file → use of the DPU's highly efficient instruction set and dataflow model
- Python and the Vitis AI unified Python high-level API were used to execute the quantized XMODEL

Coral Dev Board

- The Edge TPU supports only TensorFlow Lite models that are fully 8-bit quantized and then compiled specifically → the model cannot be trained directly with TensorFlow Lite
- TensorFlow Lite Converter was used → TensorFlow model conversion to a TensorFlow Lite
- Application of the quantization and compiling steps

EVALUATION PERFORMANCE EXAMPLES

	Sample 1	Sample 2	Sample 3
LR-Input			
Ground Truth Fire Patch	5.7	No Fire	1. 1. 1 × 1.
Fire Patch Predicted – Float Model	87	No Fire	

EVALUATION PERFORMANCE EXAMPLES

EVALUATION RESULTS

- The results indicate that the quantized LR model is performing well, as it has a 91% match on the AoI patches prediction in relevance to the float model
- Regarding the HR model, the float model is capable of capturing the main features of an active fire, resulting in the mask extraction which depicts the fire fronts
- On the other hand, the absence of previously predicted fire pixels in the quantized model predictions, indicates that some information loss occurred during the quantization process, as expected

	Latency (Seconds)	Throughput (FPS)	
0	Inference		
Kria KV260	0.0031	319.91	
Coral Dev Board	0.0675	14.81	
	Pre-	Processing	
Kria KV260	0.0645	15.50	
Coral Dev Board	0.0528	18.94	

Power	(Watt)
Kria KV260	6.6 (5.3 Idle)
Coral Dev Board	5

DISCUSSION

Takeaways

- Two-satellite concept: scout satellite / LR images, fine-pointing satellite / HR images
- Mission feasibility was demonstrated at this preliminary level via orbital analysis and active fire use case implementation

Challenges

- Resolution limits
- Limited amount of "appropriate" datasets available for DL model training
- HW Compatibility and different AI frameworks

Opportunities

 New business models such as satellite-as-a-service may leverage this technology to meet user needs via intelligent tasking and scheduling

Acknowledgments

Thanks to Max Pastena (ESA)

THANK YOU!

OHB-Hellas

Ifestou 3 15124 Marousi - Athens Greece

Web: www.ohb-hellas.gr