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Context
• Earth Observation (EO) systems are 

limited by downlink communications

• An emerging solution is to transmit 
only relevant data through                
on-board processing

• The success of Deep Learning (DL) 
in space applications makes it a good 
candidate for on-board processing

• Embedded DL is constrained by:
• Hardware limitations
• Power supply
• Computing capacity
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DNN compression methods:
• Pruning
• Weight sharing
• Efficient model architecture
• Quantization
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Efficient minifloat format for DNN 
inference

5.33x memory size reduction
22x more energy efficient multiplier 

0.3% loss in accuracy
over FP32
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Floating-point: IEEE-754 standard

4

Special cases: 
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with

• Zero representation

• Subnormal numbers

• NaN and Inf
NaN: 
Inf:

exponent mantissasign

Floating expression:

FP32
(E8M23)
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Range
exponent

Precision
mantissa

si
gn

FP32
(E8M23)

FP16
(E5M10)

BF16
(E8M7)

FP8
(E5M2)

FP8
(E4M3)

e8

e8

e5

e5

e4

m23

m10

m7

m2

m3

Minifloat    ???   ???
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Range
exponent

Precision
mantissa

si
gn

FP32
(E8M23)

FP16
(E5M10)

BF16
(E8M7)

FP8
(E5M2)

FP8
(E4M3)

e8

e8

e5

e5

e4

m23

m10

m7

m2

m3

FP6
(E3M2)

e3 m2
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Floating-point: Minifloat
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Special cases: 

Minifloat expression:

��

�� = 2log2 �� −�

0 20 21 22 �� �  23

• Zero representation

• Not supporting Subnormal numbers, NaN and Inf
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Pretrained
FP32
Model

Quantized
Model

Q
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• Data free
• Low computational cost
• Accuracy loss

Post Training Quantization
(PTQ)
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• Better accuracy
• Computationally expensive

Pretrained
FP32
Model

Quantized
Model
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FP32
Model

Quantized
Model

Q
ua

nt
iz

er

Training loop

• Data free
• Low computational cost
• Accuracy loss

Post Training Quantization
(PTQ)

Quantization Aware Training
(QAT)

Quantization approaches
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Quantization Aware Training

• Emulation of arithmetic operations with a floating-point quantizer

• Benefits: 
• Enables GPU acceleration
• Flexibility of quantization format design
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• Use of data augmentation
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Airbus Ship Dataset:
• 768x768 RGB satellite images
• 192 555 labeled images

• 150 000 empty

Training setup:
• Removal of 130 000 empty images
• Use of data augmentation

Image Segmentation:
Associate pixels to a defined class

- 0 background
- 1 ship
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Image Segmentation for Ship Detection: Model
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Thin U-Net 32 [1]:
• Small U-Net based model

• 290x smaller
• 32 channel depth for each 

            convolution layer

• 5-stage encoder / 5-stage decoder
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Image Segmentation for Ship Detection: Experiments
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Hardware Implementation Aspects
• 60% higher performance and 12.5% memory traffic reduction for E3M3 minifloat over INT8 [2]

• Use of a hybrid MAC operator: LUT-based minifloat multiplier and fixed-point adder.
• Key details: real-valued scaling factor with a symmetric exponent bias and zero encoding as �� = 0

• Our Minifloat format reduces the scaling logic required and the zero encoding slightly increases the LUT usage.
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• Propose a QAT algorithm to train low-precision floating-point
• learnable exponent bias at layer granularity for both weights and activations

• Experiments on Airbus Ship dataset show good results: E3M2 minifloat model is competitive with single 
precision baselines and INT6

• Propose an efficient minifloat multiplier implementation -> basis for a full DNN inference accelerator 

Future work
⟶ Test and deploy a quantized Thin U-Net 32 accelerator on FPGA targets
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Thank you for your attention

Questions

contact: cedric.gernigon@inria.fr


