

LOW-PRECISION FLOATING-POINT FOR EFFICIENT ON-BOARD DEEP NEURAL NETWORK PROCESSING

Cédric GERNIGON Univ Rennes, INRIA

CO-AUTHORS

Prof. Olivier SENTIEYS (Univ Rennes, INRIA) Dr. Silviu-Ioan FILIP (Univ Rennes, INRIA) Clément COGGIOLA (CNES) Mickaël BRUNO (CNES)

EDHPC 2023

2 - 6 October, 2023

Juan-les-Pins, France

• Earth Observation (EO) systems are limited by downlink communications

- Earth Observation (EO) systems are limited by downlink communications
- An emerging solution is to transmit only relevant data through on-board processing

- Earth Observation (EO) systems are limited by downlink communications
- An emerging solution is to transmit only relevant data through on-board processing
- The success of Deep Learning (DL) in space applications makes it a good candidate for on-board processing

- Earth Observation (EO) systems are limited by downlink communications
- An emerging solution is to transmit only relevant data through on-board processing
- The success of Deep Learning (DL) in space applications makes it a good candidate for on-board processing
- Embedded DL is constrained by:
 - Hardware limitations
 - Power supply
 - Computing capacity

EDHPC 2023

DNN compression

DNN compression methods:

- Pruning
- Weight sharing
- Efficient model architecture
- Quantization

DNN compression methods:

- Pruning
- Weight sharing
- Efficient model architecture
- Quantization

Pros and Cons

Memory usage

Less accurate

Power consumption

Latency

DNN compression methods:

- Pruning
- Weight sharing
- Efficient model architecture
- Quantization

Pros and Cons

B Memory usage

Less accurate

Power consumption

Latency

DNN compression methods:

- Pruning
- Weight sharing
- Efficient model architecture
- Quantization

Pros and Cons

B Memory usage

Less accurate

Power consumption

Latency

DNN compression methods:

- Pruning
- Weight sharing
- Efficient model architecture
- Quantization

Pros and Cons

Memory usage

Less accurate

Power consumption

Latency

Efficient minifloat format for DNN inference

5.33x memory size reduction 22x more energy efficient multiplier 0.3% loss in accuracy

Ínría_

cnes

Floating-point: IEEE-754 standard

Special cases:

- **Zero** representation $E_X = 0 \& M_X = 0$
- Subnormal numbers $(-1)^s imes 0.x_1 \dots x_{m-1} 1 imes 2^{-E_B}$
- NaN and Inf

NaN: $E_X = E_{max} \& M_X \neq 0$ Inf: $E_X = E_{max} \& M_X = 0$

Floating-point: formats

Floating-point: formats

Floating-point: Minifloat

Minifloat expression:

$$(-1)^s imes 1.\underbrace{x_1\ldots x_m}_{M_X} imes 2^{E_X-E_B}$$
 with $E_B=2^{e-1}-1$

Special cases:

• Zero representation

 $E_X = 0 \ \& \ M_X = 0$

• Not supporting Subnormal numbers, NaN and Inf

Floating-point: Minifloat

Minifloat expression:

EDHPC 2023

$$(-1)^s imes 1. \underbrace{x_1 \dots x_m}_{M_X} imes 2^{E_X - \lceil E_0
ceil}$$
 with E_0 a learnable parameter

Special cases:

• Zero representation

 $E_X = 0 \ \& \ M_X = 0$

• Not supporting Subnormal numbers, NaN and Inf

Floating-point: Minifloat

Minifloat expression:

Ínría_ 6 cnes

Quantization approaches

Post Training Quantization (PTQ)

- Data free
- Low computational cost
- Accuracy loss

Quantization approaches

Post Training Quantization (PTQ)

- Data free
- Low computational cost
- Accuracy loss

• Better accuracy

Computationally expensive

Ínría 7 CNES

Ínría_

cnes

Quantization Aware Training

- Emulation of arithmetic operations with a floating-point quantizer
- Benefits:
 - Enables GPU acceleration
 - Flexibility of quantization format design

Image Segmentation for Ship Detection: Dataset

Airbus Ship Dataset:

- 768x768 RGB satellite images
- 192 555 labeled images
 - 150 000 empty

Training setup:

- Removal of 130 000 empty images
- Use of data augmentation

Image Segmentation for Ship Detection: Dataset

Airbus Ship Dataset:

- 768x768 RGB satellite images
- 192 555 labeled images
 - 150 000 empty

Training setup:

EDHPC 2023

- Removal of 130 000 empty images
- Use of data augmentation

Image Segmentation:

Associate pixels to a defined class

- 0 background
- 1 ship

Ínría_

9

cnes

Image Segmentation for Ship Detection: Model

Thin U-Net 32 [1]:

- Small U-Net based model
 - 290x smaller
 - 32 channel depth for each convolution layer
- 5-stage encoder / 5-stage decoder

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
meger	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$M_X = 0$ and $E_X = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
Integer	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$M_X = 0$ and $E_X = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
Integer	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$M_X = 0$ and $E_X = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
meger	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$M_X = 0$ and $E_X = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
Integer	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$\mathbf{M}_{\mathbf{X}} = 0 \ \mathbf{and} \ \mathbf{E}_{\mathbf{X}} = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integor	70.5	6	5	learn	Zero point $= 0$
Integer	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$\mathbf{M}_{\mathbf{X}} = 0 \ \mathbf{and} \ \mathbf{E}_{\mathbf{X}} = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Ínría 11 CNES

Format	mean IoU	W bit-width	A bit-width	scaling factor	zero encoding
FP32	71.0	M23E8	M23E8	/	$M_X = 0$ and $E_X = 0$
Fixed-point	44.5	6	6	$2^{\lceil \log_2(\max X) \rceil}$	Zero point $= 0$
Integra	70.5	6	5	learn	Zero point $= 0$
Integer	68.3	5	4	learn	Zero point $= 0$
	63.4	E3M2	E3M2	$2^{2^{e-1}}$	$E_X = 0$
	64.8	E3M2	E3M2	$2^{2^{e-1}}$	$M_X = 0$ and $E_X = 0$
	70.1	E3M3	E3M3	learn	$E_X = 0$
Minifloat	70.0	E3M2	E3M2	learn	$E_X = 0$
	71.4	E4M2	E4M2	learn	$M_X = 0$ and $E_X = 0$
	70.9	E3M3	E3M3	learn	$M_X = 0$ and $E_X = 0$
	70.7	E3M2	E3M2	learn	$\mathbf{M}_{\mathbf{X}} = 0 \ \mathbf{and} \ \mathbf{E}_{\mathbf{X}} = 0$
	68.1	E2M2	E2M2	learn	$M_X = 0$ and $E_X = 0$

Ínría 11 CNES

Inría 12

cnes

Hardware Implementation Aspects

- 60% higher performance and 12.5% memory traffic reduction for E3M3 minifloat over INT8 [2]
 - Use of a hybrid MAC operator: LUT-based minifloat multiplier and fixed-point adder.
 - Key details: real-valued scaling factor with a symmetric exponent bias and zero encoding as E x = 0

• Our Minifloat format reduces the scaling logic required and the zero encoding slightly increases the LUT usage.

Inría 12

cnes

Hardware Implementation Aspects

- 60% higher performance and 12.5% memory traffic reduction for E3M3 minifloat over INT8 [2]
 - Use of a hybrid MAC operator: LUT-based minifloat multiplier and fixed-point adder.
 - Key details: real-valued scaling factor with a symmetric exponent bias and zero encoding as E x = 0

• Our Minifloat format reduces the scaling logic required and the zero encoding slightly increases the LUT usage.

Conclusion

- Propose a **QAT algorithm** to train **low-precision floating-point**
 - **learnable exponent bias** at layer granularity for both weights and activations
- Experiments on Airbus Ship dataset show good results: E3M2 minifloat model is competitive with single precision baselines and INT6
- Propose an efficient minifloat multiplier implementation -> basis for a full DNN inference accelerator

Future work

 \rightarrow Test and deploy a quantized Thin U-Net 32 accelerator on FPGA targets

Thank you for your attention

contact: cedric.gernigon@inria.fr

Questions

