AMD

Application of AMD Versal[™] Adaptive SoC to Radar Space Time Adaptive Processing in Space

Ken O'Neill, Jason Timpe – AMD Adaptive Embedded Computing Group Dhimiter Qendri, Bachir Berkane, Geoffrey Chapman, David Quinn – Fidus Systems koneill@amd.com

October 2023

APPROVED FOR PUBLIC RELEASE

Agenda

- Space Time Adaptive Processing (STAP) for radar
 - Background and introduction
- Example of STAP processing in a reconfigurable platform
 - Development approach
 - Performance and utilization example
- AMD XQR Versal[™] Adaptive SoC for space applications
 - Features and benefits
 - Qualification and availability
 - Radiation effects
- Questions and answers

Radar Space Time Adaptive Processing (STAP)

- Identify ground moving target indication (GMTI) against background reflection (backscatter)
 - Radar platform moving relative to ground and target
 - Jamming may be present
- Radar returns stored in data cuboid for processing
 - L x M x N matrix of complex 16-bit integer values
 - L = number of samples in a pulse repetition interval (PRI)
 - M = number of pulses in a coherent pulse interval (CPI)
 - N = number of actively-scanned antenna elements
 - In our example, L = 200, M = 10, N = 4, a pulse is transmitted every 32µsec, and a complete data cuboid must be processed in 320µsec
- Processing involves complex matrix multiplication to implement spatial and temporal filtering

Three Components of Space-Time Processing

- Training data selection
 - Selects from the CPI data cuboid a set of training data that will be used to estimate the interference
- Weight computation
 - Computes the adaptive weight vector from the training data
 - Requires solution of a linear system of equations
 - New weight vector is computed with each CPI data cuboid
- Weight application
 - Computes the inner product of the weight vector and space-time data vector
- The scalar output is then compared to a threshold to determine if a target is present at the specified angle and doppler

Two Phase Development With AMD Versal[™] Core Adaptive SoC

Phase One

- Radar data and filter weights generated in MATLAB[®]
 - Transmitted to VCK190 development board
 - Received by TCP/IP stack running in processor system in VC1902 adaptive SoC
 - Written to DDR on VCK190 board
- STAP filtering performed on VCK190 board
 - Performed in AI engines on VC1902 adaptive SoC
 - Processed signal written to DDR on VCK190
- Results sent back to MATLAB for comparison
 - Transmitted by TCP/IP stack in Versal Core VC1902 adaptive SoC

Phase Two

- Radar data generated in MATLAB
- Filter weights generated in AI engines of Versal Core VC1902 adaptive SoC
 - Covariance matrix computation
 - Inversion of covariance matrix
 - Calculation of filtering weights
- STAP filtering performed on VCK190 board
 - Performed in AI engines on VC1902 adaptive SoC
 - Processed signal written to DDR on VCK190
- Results sent back to MATLAB for comparison
 - Transmitted by TCP/IP stack in Versal Core VC1902 adaptive SoC

The software-programmable AI Engines in the Versal Adaptive SoC enabled the development team to implement and test significant changes to the covariance matrix inversion algorithm much faster than would have been possible with programmable logic and DSP blocks

AMD Versal[™] Adaptive SoC Resource Utilization

This radar STAP design fits easily into Versal Core VC1902 adaptive SoC

Resource	Amount Available in XQRVC1902	Amount Used in Phase 1 Design	Amount Used in Phase 2 Design
LUTs (6 Input)	899,840	9,387	230,385
SRAM	191 Mbit	0	50.4 Mbit
DSP Engines	1,968	0	1,136
AI Engines, Clock Rate	400	40, 1 GHz	78, 1.25 GHz

STAP Processing Results

Input dominated by ground clutter, with target not visible

Output image shows elimination of background clutter and barrage jammer

Versal[™] Adaptive SoC AI Engine

- Each AI Engine consists of
 - 512-bit SIMD (single instruction, multiple data) vector units, both fixed-point and floating-point
 - 16 KB program memory
 - 32-bit scalar RISC processor
 - 256-bit load (x2) and store units with individual address generation units (AGUs)

Vector

Register

File

AGU

Store Unit

Fixed-Point

Vector Unit

Floating-Point

Vector Unit

Instruction Fetch

& Decode Unit

Stream Interface

Vector Unit

Capable of 32 GMACs/second

Scalar ALU

Non-linear

Functions

AGU

Load Unit B

Memory Interface

Scalar Unit

Software programmable

Scalar

Register

File

AGU

Load Unit A

Memory

Interface

Interface

Cascade Interface

Stream

XQR Versal[™] Adaptive SoC Product Table

		XQRVC1902-1MSBVSRA2197 (AI Core)	XQRVE2302-1MSBSSRA784 (AI Edge)	
Intelligent Engines	AI Engine Tiles	400 (AIE)	34 (AIE-ML)	
	AI Engine Data Memory (Mb)	100	17	
	AI-ML Shared Memory (Mb)	-	68	
	DSP Engines	1,968	464	
	System Logic Cells (K)	1,968	329	
Adaptable Engines	LUTs	899,840	150,272	
Adaptable Engines	NoC Master/NoC Slave Ports	28	5	
	Distributed RAM (Mb)	27	4.6	
	Total Block RAM (Mb)	34	5.4	
	UltraRAM (Mb)	130	43.6	
Momory	Accelerator RAM (Mb)	-	32	
Memory	Total PL Memory (Mb)	191	86	
	DDR Memory Controllers	4	1	
	DDR Bus Width	256	64	
	Application Processing Unit	Dual-core Arm [®] Cortex [®] -A72, 48KB/32KB L1 Cache w/ECC 1 MB L2 Cache w/ECC		
Scalar Engines	Real-time Processing Unit	Dual-core Arm Cortex-R5F, 32KB/32KB L1 Cache, and 256KB TCM w/ECC		
Scalar Engines	DDR Bus Width 256 64 Application Processing Unit Dual-core Arm® Cortex®-A72, 48KB/32KB L1 Cache w/ECC 1 MB L2 Cache w/ECC Real-time Processing Unit Dual-core Arm Cortex-R5F, 32KB/32KB L1 Cache, and 256KB TCM w/ECC Memory 256KB On-Chip Memory w/ECC	Memory w/ECC		
	Connectivity	Ethernet (x2); UART (x2); CAN-FD	(x2) USB 2.0 (x1); SPI (x2); I2C (x2)	
Serial Transceivers	GTx Transceivers	44 GTY (26.5625 Gb/s)	8 GTYP (26.5625 Gb/s)	
	CCIX & PCIe [®] w/DMA (CPM)	1 x Gen4x8, CCIX	-	
Integrated Protocol IP	PCI Express	4 x Gen4x8	1 x Gen4x8	
	Multirate Ethernet MAC	4	1	
	Platform Management Controller	Boot, Security, Safety, Monitoring, High	Speed Debug, SEU Mitigation (XilSEM)	
Package	Ruggedized Organic BGA	VSRA2197, 45mm x 45mm, 0.92mm pitch	SSRA784, 23mm x 23mm, 0.8mm pitch	
I/O		648 XPIO, 44 HDIO, 78 MIO, 44 GTY	216 XPIO, 22 HDIO, 78 MIO, 8 GTYP	
Radiation Single Event Effects (SEE)	Proton and Heavy-Ion Testing Ongoing in 2022	NO SEL, 100% Correctable SEUs, Ultra-low SEFI		

XQRVC1902 B qual completed 2022, product shipping!

AMD Reliability Qualification for Versal[™] XQR (Class B)

• AMD has successfully completed our Class B qualification for the Versal XQRVC1902 device

Stress Test	MIL-STD-883 JEDEC reference	Conditions Duration / Sample Size		Results
Prod. Burn-in	TM 1015	Dynamic, Tj = 125°C Vccmax	160 hrs.	Passed
Group A	TM 5005	Functional, AC and DC Parameters Test at -55°C, 25°C and 125°C	Test at -55°C, 25°C and 125°C	Passed
Group B	Various JEDEC	Assembly Monitors	\checkmark	Passed
Group C	TM 1005	Tj = 125°C, Vccmax	1000 hours 3 lot, 135 units total	Passed
HTS ¹	TM 1008	Ta = 150°C	1000 hours 3 lots, 75 units total	Passed
THB ¹	JESD22-A101	85°C / 85% RH, Vccmax	1000 hours 3 lots, 75 units total	Passed
Temp Cycle ¹	TM 1010	B: -55°C / 125°C	1000 cycles 3 lots, 75 units total	Passed
Group D ¹	TM 5005	Sub-Groups 1,3,4,5	3 lots, 15 units / subgroup	Passed

(1) Units submitted to MSL-4 preconditioning prior to stressing

Versal[™] Adaptive SoC Radiation Effects Summary

	Protons (2 – 105 MeV) Low Earth Orbit, 500 km, 20° inclination		Heavy-ions (1 - 80 MeV·cm²/mg) Geosynchronous Earth Orbit		TID		
	CRAM SEU (upset/bit/day)	SEL	SEFI (events/device/ <mark>year</mark>)	CRAM SEU (upset/bit/day)	SEL	SEFI (events/device/ <mark>year</mark>)	(gamma)
Observed Rates	3.5x10 ⁻⁹	ZERO events observed	PS: 1.3 XilSEM: ZERO AIE, GT Planned CY2023	6.5x10 ⁻¹²	ZERO events observed	PS: 0.16 and XilSEM: 4.9x10 ⁻³ AIE, GT Planned CY2023	PASS 120 KRad(Si)
Comments	Proton energy: 64-400MeV Environment: 1x10 ¹² p/cm ² at 125°C		Ion Energy: 1-80 MeV·cm²/mg Environment: 1x10 ⁷ per ion/cm² at 125°C		<18 Krad/min		

Estimates based on CREME96 AP8-Max; 500km and GEO models

- DUTs: Versal 7nm VC1902, 20 parts from 5 wafer lots to account for lot-to-lot variation
- ZERO SEL events in maximum V_{CC} and junction temperature conditions at LET up to 80 MeV·cm²/mg
- ZERO uncorrectable Configuration RAM (CRAM) events in LEO and GEO
 - Configuration RAM protected by EDAC and interleaving
- Robust XilSEM internal scrubber SEFI rate may eliminate need for on-board scrubber in space flight
 - Reference Xilinx user guides UG643 and PG352 for XilSEM scrubbing operation and cycle time
- Xilinx has published Versal SEE results at SEE/MAPLD 2022, NSREC 2022, RADECS 2022 and NSREC 2023
 - Versal 7nm SEL and SEU (terrestrial neutron) paper published & presented at NSREC 2021

Conclusion

- Radar Space Time Adaptive Processing (STAP) enables detection of moving targets against cluttered backgrounds, by radar platforms which are in motion, in the presence of jamming
- High-throughput SIMD vector processors provide a software-programmable method of implementing the complex matrix manipulation needed for radar STAP and other forms of RF signal processing
- AI Engines in AMD Versal[™] Adaptive SoC devices allow major design changes to be implemented with minimal timing closure delays, saving significant design cycle time compared to changes in RTL
- Ken O'Neill <u>koneill@amd.com</u>
- Jason Timpe jason.timpe@amd.com

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

©2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Xilinx, the Xilinx logo, Vivado, Kintex, Versal, Virtex and UltraScale and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. ARM and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. PCIe® is a registered trademark of PCI-SIG Corporation. MATLAB® is a registered trademark of The MathWorks, Inc.