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Space-Based Deep Learning

▪ In recent years, Deep Learning (DL) is gaining popularity in the space sector as a versatile tool 
for EO classification and detection problems and Vision-Based GNC systems, among others. 

▪ Autonomous vision-based spacecraft navigation is one key area with the potential of largely 
benefiting from Deep Learning estimation methods

▪ More precisely, problems involving detection, segmentation or classification can have a 
significant improvement in performances and robustness by switching to an AI-based approach.

▪ Edge-Computing of inferred DNN, CNN or a whole continual Learning application imposes high-
performance processing requirements for autonomous real-time execution in space avionics

On-Board Processing
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Avionics for DL and Deployment
High-Performance Acceleration

a) FPGA HDL handwritten ad-hoc IP

a) General DL IP

b) SW-based

a) CPU

b) FPGA HLS Flow

c) Dedicated AI cores

a) VPU

b) TPU

c) AI engines

d) Model-Based Design options

a) FPGA, CPU, DPU, DSP, GPU

Source: https://research.konicaminolta.com/en/technology/tech_details/nngen/

architecture of hand-written HDL-coded
GMV’s Deep Learning FPGA accelerator
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DL Accelerator Development and Analysis
Processor, tools, deployment, architetcure

• Flight-segment AI accelerator compatible with 
new standard ADHA architecture 

     - High-Performance dedicated Processing Unit

- COTS, Ruggedized, Rad-Tol, Rad-Hard

• Different approaches being developed

- (A) FPGA hand-written RTL DL processor

- (B) Model-based Design to HW/SW FPGA SoC

- (C) Dedicated AI cores:

- Ubotica’s Myriad2 VPU + Controller FPGA

- [bonus-track] Versal ACAP AI core

• AI Demonstrators Use-Cases

 - Moon Landing Crater Detection

 - Space Exploration Asteroid patch pinpointing

 - Space-Based Surveillance Debris Detection



General Approach

Generation of image datasets



Scenario and Objective

FPGA DL processor RTL (A)

• Use-Case: Crater Edge Detection for Moon landing Absolute Nav

• DL Model provided as input using TensorFlow and Keras

• Many challenges to port a full accurate Float64_t, images 2048x2048

• Python library created to extract layers, dimensions, weights, biases

• Avionics

- ALPHA-DATA-KU060 representative 
of rad-tol XQRKU060

- Dedicated RTL architecture from scratch



FPGA dedicated implementation

Technical Details (A)

• Ad-hoc architecture for on-board deep neural networks in HDL

• Reconfigurable FPGA-accelerated deep learning processor.

• parameterization of modules programmatically generated and generic 
models be constructed from implemented layer types

• Controller HDL module sequences steps and handles data transfers

• Processing pipeline implements different processing units interconnected

• Processing Units (PU) implements functions, convolution kernels and
other operations over data

- Diferent generics used in HDL to adapt to the Neuronal Network 
Architecture, functions and sizes (pre-synthesis of RTL)

- DSPs in an inverted pyramid for bias and mapping of activation functions
ReLu/sigmoid



FPGA dedicated implementation

Demonstration Results (A)

• Data: 2048x2048 8-bit pixels input images and 2048x2048 
pixels output feature map

• U-Net model containing 30 layes with Conv2D, 
DepthwiseConv2D, MaxPool2D, concatenation in 14 PUs and with
different activations ReLu and sigmoid.

• BRAMs optimization based on simplification to low-down from
96% to 72% Resources utilization

• The estimated center and radius of the craters error with respect 
to SW results were found to be subpixel.

• 98% of crater matches of SW implementation vs FPGA one.

• Demonstrator over ethernet connection to Monitoring PC 
imposed many communication problems and reduced speed link

Center of radius comparison of FPGA vs SW solution



• Use-Case: space debris detection and localization in space-based
surveillance system using AI

• Different Model-Based Design tools evaluated: from Model to HW

▪ Intermediate representation languages to prepare model towards HLS input 
coders

• Each MBD toolset includes a different HDL autocoder: 

▪ Xilinx HLS, BAMBU and Veriloggen

• Avionics

- Ultra96 Zynq Ultrascale+ ZCU03 representative
of commercial fligth cubesat boards

- FPGA Dynamic Partial reconfiguration
framework to switch between implementations

Scenario and Objective

Model-based Design on SoC (B)
debris detection



MBD from concept to SoC HW

Technical Details (B)

• Comparison of hls4ml, SODA-OPT, NNgen

• Solution deployment using NNgen open-source, python-based tools

• Initial model from Caffe, TensorFlow, Pytorch or direct NNgen format primitives 
▪ ONNX intermediate representation if not using primitives 

▪ We used Pytorch→ONNX→Veriloggen→RTL.

• Four models: ResNet, DenseNet, SqueezeNet and custom TinyCNN
▪ TinyCNN, is a shallower architecture made ad-hoc, that was shown to perform relatively well 

for the space debris detection task

• Data-types selection and quantization for inputs (mean, std), bias, weights

• Verilog HDL source and IP-XACT IP-core package (AXI4-lite & AXI4 full)

• Veriloggen Backend open-source
▪ (modifiable to port to Xilinx, Microsemi, NanoXplore, FG-Lattice…)

• 10x speedup Performance vs SW: 
▪ VGG-11 & ResNet on ImageNet, Digit classification

ResNet

DenseNet

SqueezeNet
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MBD from concept to SoC HW

Demonstration Results (B)

• about 2/3 of the total FPGA area resources, TinyCNN less resources, 
comparable to ResNet but for the extense BRAMs
▪ Dynamic partial reconfiguration is used to switch between different accelerators in 

runtime.

• Accuracy functional results above 97% but for TinyCNN ~84%

• Deployment in Zynq Ultrascale+ provides different deployment
processing options: PL FPGA, ARM A53 quad-core, ARM R5 dual-core

• For the ARM SW processors, both use active data and instructions 
caches, float-point and the A53 takes advantage of ARM Neon SIMD 
extensios

• Execution time: 
▪ fastest for TinyCNN in all the resources (FPGA or processors) and even performs 

better in SW quad-core than in FPGA acceleration

▪ ResNet penalized in SW procesors compared to the FPGA to SW comparison in other 
models (speed-up above 18x)

* the measurements of time for the FPGA hardware accelerators include the 
overheads due to the memory accesses to the input images and the 
network weights by the accelerator



Scenario and Objective

Dedicated AI cores (C)

• Use-Case #1: autonomously detect and provide list of craters and 
positions with accuracy performances for dencent and landing on
Moon(7,3km-100km)

• Use-Case #2: autonomously detect and pinpoint previously selected
patches on images of the surface of the asteroid for scientific
exploration

• Avionics

Reference image Query image

Patch pinpointing

crater detection

- KCU105 Kintex Ultrascale
  representative XQRKU060
  with LEON5 softcore and
  dedicated FPGA IPs

UB0100 CubeSat Board
+ Movidius Myriad2 VPU



VPU dedicated AI engines

Technical Details (C)

• Myriad2 VPU for use in low-power edge applications providing in excess 
of 1 TOPs of compute power, integrated in UB0100 Ubotica Cubesat 
board characterized for use in space. 

▪ Intel Movidius Myriad2 USB stick for development steps

• Reconfigurable FPGA Kintex Ultrascale implements LEON5 acting as 
Subsystem Payload Controller interfacing to OBC, camera sensor and 
linking with UB0100 through non-space ethernet interface.

▪ Implements pre-processing camera images step, configuring and monitoring VPU 
accelerator

• GMV developed DNN design models for both Use-Cases #1 and #2

▪ Use-case#1 YOLOv3 modified architecture with grid of square cells division of
images in different scales

▪ For Use-Case#2 it relies on Siamese network to compare and measure similarity of
reference patch and query image from camera. Trained with triplet los function

• OpenVino intermediate framework from model to dedicated Myriad2 
library. Ubotica developed the low-level Myriad2 SW and its optimization
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VPU dedicated AI engines

Demonstration Results (C)

• Demonstration of 2 use-cases. Receiver operator curve (ROC) adapted to 
localization problem (normally classification problem) to use in 2 UCs

• UC#1 NN Moon D&L stochastic error of 7.6 pixel in X and Y synthetic data and 
7.67 real dataset (True Positive rate > 0,3)

• UC#2 NN Asteroid patch stochastic error of 43 pixel validation dataset while 74 in 
test dataset with different terrains (True Positive rate > 0,3)

• Execution time: 13.56 seconds are used to complete chain reading the image, 
built the collage, perform the inference on it, obtain the descriptors ordered 
correctly, same process with the patch and calculate the Euclidean distance.

ROC NN Moon Descent and Landing Use-Case #1

ROC NN Asteroid patch pinpointing Use-Case #2



Scenario, Avionics and Development Steps

Dedicated AI cores (C-bonus)

• Use-Case #2: detect and pinpoint selected patches on
images of asteroid for scientific exploration

• Avionics

- Versal AI-core VCK190 development kit (XQRVC190 rad-tol equivalent)
- scalar processing (CPU – ARM Cortex)

- Vector processing (DSP)

- Programmable logic (FPGA)

- Deep learning processing unit (DPU)

- AI engines (scalar RISC processors)

• Development steps:
- .h5 representation of the model generated and trained in Tensorflow2

- Float32, sigmoid and relu, Conv2D, SeparableConv2D, MaxPooling2D, BatchNormalization 
and Add layers

- Vitis AI library for inspection, followed by quantization and networks checks

- Inspector requires target (Zynq, Zynq Ultrascale+ or ACAP), model and size of NN input

- the .svg image represents in blue and red which layers can be quantized and which 
cannot. This files show that whenever the network splits in two branches, the branch 
guided by a SeparableConv2D layer will be totally executed by the CPU and therefore will 
not be quantized/accelerated, because the DPU on the VCK190 does not support the 
separable convolution layer



Demonstration of different deep learning avionics solutions for space applications

CONCLUSION

FPGA Dedicated Implementation 
(A): We introduced a specialized 
architecture for on-board DNN 

inference implemented on radiation-
tolerant FPGAs. Through Hardware 

Description Language (HDL) 
development, we created a 

reconfigurable FPGA-accelerated 
deep learning processor. The 

architecture encompassed controller 
and processing pipeline elements, 

demonstrating its potential through 
the implementation of a U-Net 
model for crater detection. The 

design was resource-efficient, and 
laid the groundwork for further 

optimizations

Model-Based Design Workflow 
(B): We explored two use cases 

that leveraged model-based design 
workflows for accelerating DNNs on 
FPGAs. We evaluated different tools, 
such as hls4ml, NNgen, and SODA-
OPT, for automatic code generation 

and deployment. The workflow 
facilitated seamless translation from 

algorithmic frameworks to FPGA 
implementations. By testing various 

models and configurations, we 
demonstrated the feasibility and 

potential advantages of this 
approach.

Video-Processing Unit and AI 
Engines (C): We delved into the 

application of dedicated 
accelerators, such as the Myriad2 

VPU and the newly introduced 
Versal AI Core ACAP, for space-
related tasks. Our focus was on 

scenarios involving crater 
localization on the Moon and patch 
detection on asteroid images. We 

demonstrated the capabilities of the 
Myriad2 VPU in detecting craters 
and specific patches. Additionally, 
we outlined the potential of the 

Versal AI Core ACAP, highlighting its 
heterogeneous architecture and AI 

Engine capabilities.
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Thank you
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