
© GMV Property – 15/03/2023 - All rights reserved

Analysis and Implementation of
Space Avionics Co-Processor for
Deep Learning Acceleration

European Data Handling & Data Processing Conference for Space
dgarjona@gmv.com

D. Gonzalez-Arjona

J. Ferre

A. Jiménez-Peralo

D. Fortun

D. Lo Presti

D. Gogu

Space-Based Deep Learning

▪ In recent years, Deep Learning (DL) is gaining popularity in the space sector as a versatile tool
for EO classification and detection problems and Vision-Based GNC systems, among others.

▪ Autonomous vision-based spacecraft navigation is one key area with the potential of largely
benefiting from Deep Learning estimation methods

▪ More precisely, problems involving detection, segmentation or classification can have a
significant improvement in performances and robustness by switching to an AI-based approach.

▪ Edge-Computing of inferred DNN, CNN or a whole continual Learning application imposes high-
performance processing requirements for autonomous real-time execution in space avionics

On-Board Processing

© GMV Property – 15/03/2023 - All rights reserved Page. 3

Avionics for DL and Deployment
High-Performance Acceleration

a) FPGA HDL handwritten ad-hoc IP

a) General DL IP

b) SW-based

a) CPU

b) FPGA HLS Flow

c) Dedicated AI cores

a) VPU

b) TPU

c) AI engines

d) Model-Based Design options

a) FPGA, CPU, DPU, DSP, GPU

Source: https://research.konicaminolta.com/en/technology/tech_details/nngen/

architecture of hand-written HDL-coded
GMV’s Deep Learning FPGA accelerator

© GMV Property – 15/03/2023 - All rights reserved Page. 4

DL Accelerator Development and Analysis
Processor, tools, deployment, architetcure

• Flight-segment AI accelerator compatible with
new standard ADHA architecture

 - High-Performance dedicated Processing Unit

- COTS, Ruggedized, Rad-Tol, Rad-Hard

• Different approaches being developed

- (A) FPGA hand-written RTL DL processor

- (B) Model-based Design to HW/SW FPGA SoC

- (C) Dedicated AI cores:

- Ubotica’s Myriad2 VPU + Controller FPGA

- [bonus-track] Versal ACAP AI core

• AI Demonstrators Use-Cases

 - Moon Landing Crater Detection

 - Space Exploration Asteroid patch pinpointing

 - Space-Based Surveillance Debris Detection

General Approach

Generation of image datasets

Scenario and Objective

FPGA DL processor RTL (A)

• Use-Case: Crater Edge Detection for Moon landing Absolute Nav

• DL Model provided as input using TensorFlow and Keras

• Many challenges to port a full accurate Float64_t, images 2048x2048

• Python library created to extract layers, dimensions, weights, biases

• Avionics

- ALPHA-DATA-KU060 representative
of rad-tol XQRKU060

- Dedicated RTL architecture from scratch

FPGA dedicated implementation

Technical Details (A)

• Ad-hoc architecture for on-board deep neural networks in HDL

• Reconfigurable FPGA-accelerated deep learning processor.

• parameterization of modules programmatically generated and generic
models be constructed from implemented layer types

• Controller HDL module sequences steps and handles data transfers

• Processing pipeline implements different processing units interconnected

• Processing Units (PU) implements functions, convolution kernels and
other operations over data

- Diferent generics used in HDL to adapt to the Neuronal Network
Architecture, functions and sizes (pre-synthesis of RTL)

- DSPs in an inverted pyramid for bias and mapping of activation functions
ReLu/sigmoid

FPGA dedicated implementation

Demonstration Results (A)

• Data: 2048x2048 8-bit pixels input images and 2048x2048
pixels output feature map

• U-Net model containing 30 layes with Conv2D,
DepthwiseConv2D, MaxPool2D, concatenation in 14 PUs and with
different activations ReLu and sigmoid.

• BRAMs optimization based on simplification to low-down from
96% to 72% Resources utilization

• The estimated center and radius of the craters error with respect
to SW results were found to be subpixel.

• 98% of crater matches of SW implementation vs FPGA one.

• Demonstrator over ethernet connection to Monitoring PC
imposed many communication problems and reduced speed link

Center of radius comparison of FPGA vs SW solution

• Use-Case: space debris detection and localization in space-based
surveillance system using AI

• Different Model-Based Design tools evaluated: from Model to HW

▪ Intermediate representation languages to prepare model towards HLS input
coders

• Each MBD toolset includes a different HDL autocoder:

▪ Xilinx HLS, BAMBU and Veriloggen

• Avionics

- Ultra96 Zynq Ultrascale+ ZCU03 representative
of commercial fligth cubesat boards

- FPGA Dynamic Partial reconfiguration
framework to switch between implementations

Scenario and Objective

Model-based Design on SoC (B)
debris detection

MBD from concept to SoC HW

Technical Details (B)

• Comparison of hls4ml, SODA-OPT, NNgen

• Solution deployment using NNgen open-source, python-based tools

• Initial model from Caffe, TensorFlow, Pytorch or direct NNgen format primitives
▪ ONNX intermediate representation if not using primitives

▪ We used Pytorch→ONNX→Veriloggen→RTL.

• Four models: ResNet, DenseNet, SqueezeNet and custom TinyCNN
▪ TinyCNN, is a shallower architecture made ad-hoc, that was shown to perform relatively well

for the space debris detection task

• Data-types selection and quantization for inputs (mean, std), bias, weights

• Verilog HDL source and IP-XACT IP-core package (AXI4-lite & AXI4 full)

• Veriloggen Backend open-source
▪ (modifiable to port to Xilinx, Microsemi, NanoXplore, FG-Lattice…)

• 10x speedup Performance vs SW:
▪ VGG-11 & ResNet on ImageNet, Digit classification

ResNet

DenseNet

SqueezeNet

N
N

g
e
n

MBD from concept to SoC HW

Demonstration Results (B)

• about 2/3 of the total FPGA area resources, TinyCNN less resources,
comparable to ResNet but for the extense BRAMs
▪ Dynamic partial reconfiguration is used to switch between different accelerators in

runtime.

• Accuracy functional results above 97% but for TinyCNN ~84%

• Deployment in Zynq Ultrascale+ provides different deployment
processing options: PL FPGA, ARM A53 quad-core, ARM R5 dual-core

• For the ARM SW processors, both use active data and instructions
caches, float-point and the A53 takes advantage of ARM Neon SIMD
extensios

• Execution time:
▪ fastest for TinyCNN in all the resources (FPGA or processors) and even performs

better in SW quad-core than in FPGA acceleration

▪ ResNet penalized in SW procesors compared to the FPGA to SW comparison in other
models (speed-up above 18x)

* the measurements of time for the FPGA hardware accelerators include the
overheads due to the memory accesses to the input images and the
network weights by the accelerator

Scenario and Objective

Dedicated AI cores (C)

• Use-Case #1: autonomously detect and provide list of craters and
positions with accuracy performances for dencent and landing on
Moon(7,3km-100km)

• Use-Case #2: autonomously detect and pinpoint previously selected
patches on images of the surface of the asteroid for scientific
exploration

• Avionics

Reference image Query image

Patch pinpointing

crater detection

- KCU105 Kintex Ultrascale
 representative XQRKU060
 with LEON5 softcore and
 dedicated FPGA IPs

UB0100 CubeSat Board
+ Movidius Myriad2 VPU

VPU dedicated AI engines

Technical Details (C)

• Myriad2 VPU for use in low-power edge applications providing in excess
of 1 TOPs of compute power, integrated in UB0100 Ubotica Cubesat
board characterized for use in space.

▪ Intel Movidius Myriad2 USB stick for development steps

• Reconfigurable FPGA Kintex Ultrascale implements LEON5 acting as
Subsystem Payload Controller interfacing to OBC, camera sensor and
linking with UB0100 through non-space ethernet interface.

▪ Implements pre-processing camera images step, configuring and monitoring VPU
accelerator

• GMV developed DNN design models for both Use-Cases #1 and #2

▪ Use-case#1 YOLOv3 modified architecture with grid of square cells division of
images in different scales

▪ For Use-Case#2 it relies on Siamese network to compare and measure similarity of
reference patch and query image from camera. Trained with triplet los function

• OpenVino intermediate framework from model to dedicated Myriad2
library. Ubotica developed the low-level Myriad2 SW and its optimization

u
s
e
-c

a
s
e
#

1
u
s
e
-c

a
s
e
#

2

100% correct
results

Model
Verifiction

VPU dedicated AI engines

Demonstration Results (C)

• Demonstration of 2 use-cases. Receiver operator curve (ROC) adapted to
localization problem (normally classification problem) to use in 2 UCs

• UC#1 NN Moon D&L stochastic error of 7.6 pixel in X and Y synthetic data and
7.67 real dataset (True Positive rate > 0,3)

• UC#2 NN Asteroid patch stochastic error of 43 pixel validation dataset while 74 in
test dataset with different terrains (True Positive rate > 0,3)

• Execution time: 13.56 seconds are used to complete chain reading the image,
built the collage, perform the inference on it, obtain the descriptors ordered
correctly, same process with the patch and calculate the Euclidean distance.

ROC NN Moon Descent and Landing Use-Case #1

ROC NN Asteroid patch pinpointing Use-Case #2

Scenario, Avionics and Development Steps

Dedicated AI cores (C-bonus)

• Use-Case #2: detect and pinpoint selected patches on
images of asteroid for scientific exploration

• Avionics

- Versal AI-core VCK190 development kit (XQRVC190 rad-tol equivalent)
- scalar processing (CPU – ARM Cortex)

- Vector processing (DSP)

- Programmable logic (FPGA)

- Deep learning processing unit (DPU)

- AI engines (scalar RISC processors)

• Development steps:
- .h5 representation of the model generated and trained in Tensorflow2

- Float32, sigmoid and relu, Conv2D, SeparableConv2D, MaxPooling2D, BatchNormalization
and Add layers

- Vitis AI library for inspection, followed by quantization and networks checks

- Inspector requires target (Zynq, Zynq Ultrascale+ or ACAP), model and size of NN input

- the .svg image represents in blue and red which layers can be quantized and which
cannot. This files show that whenever the network splits in two branches, the branch
guided by a SeparableConv2D layer will be totally executed by the CPU and therefore will
not be quantized/accelerated, because the DPU on the VCK190 does not support the
separable convolution layer

Demonstration of different deep learning avionics solutions for space applications

CONCLUSION

FPGA Dedicated Implementation
(A): We introduced a specialized
architecture for on-board DNN

inference implemented on radiation-
tolerant FPGAs. Through Hardware

Description Language (HDL)
development, we created a

reconfigurable FPGA-accelerated
deep learning processor. The

architecture encompassed controller
and processing pipeline elements,

demonstrating its potential through
the implementation of a U-Net
model for crater detection. The

design was resource-efficient, and
laid the groundwork for further

optimizations

Model-Based Design Workflow
(B): We explored two use cases

that leveraged model-based design
workflows for accelerating DNNs on
FPGAs. We evaluated different tools,
such as hls4ml, NNgen, and SODA-
OPT, for automatic code generation

and deployment. The workflow
facilitated seamless translation from

algorithmic frameworks to FPGA
implementations. By testing various

models and configurations, we
demonstrated the feasibility and

potential advantages of this
approach.

Video-Processing Unit and AI
Engines (C): We delved into the

application of dedicated
accelerators, such as the Myriad2

VPU and the newly introduced
Versal AI Core ACAP, for space-
related tasks. Our focus was on

scenarios involving crater
localization on the Moon and patch
detection on asteroid images. We

demonstrated the capabilities of the
Myriad2 VPU in detecting craters
and specific patches. Additionally,
we outlined the potential of the

Versal AI Core ACAP, highlighting its
heterogeneous architecture and AI

Engine capabilities.

© GMV Property – 15/03/2023 - All rights reserved

Thank you

	Slide 1: Analysis and Implementation of Space Avionics Co-Processor for Deep Learning Acceleration European Data Handling & Data Processing Conference for Space dgarjona@gmv.com
	Slide 2: Space-Based Deep Learning
	Slide 3: Avionics for DL and Deployment
	Slide 4: DL Accelerator Development and Analysis
	Slide 5: Generation of image datasets
	Slide 6: FPGA DL processor RTL (A)
	Slide 7: Technical Details (A)
	Slide 8: Demonstration Results (A)
	Slide 9: Model-based Design on SoC (B)
	Slide 10: Technical Details (B)
	Slide 11: Demonstration Results (B)
	Slide 12: Dedicated AI cores (C)
	Slide 13: Technical Details (C)
	Slide 14: Demonstration Results (C)
	Slide 15: Dedicated AI cores (C-bonus)
	Slide 16: CONCLUSION
	Slide 17

