

Microelectronics Radiation Mitigation

R. Jansen – TEC-EDM

19/01/2023

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

*

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

Mission Analysis – Introduction

- Inputs for the selection of the appropriate microelectronics mitigation
 - Mission duration
 - Mission Environment
 - Functionality and performance requirement
 - Reliability and Availability
- System, Unit and Board level analysis yields additional requirements
 - Component selection (preliminary)
 - Verification and validation
- Mitigation at electronics level is a trade-off against
 - System performance (Speed, Latency, Availability, ...)
 - Power consumption
 - Area utilisation
 - Engineering time and Cost

Mission Analysis – Mission & System Inputs

- Input for the selection of the appropriate component
 - Mission Classification Product Assurance/Quality
 - Component class
 - Maximum SEE LET level
 - GEO 60 MeVcm2/mg or
 - LEO 36 MeVcm2/mg
 - Maximum TID dose (Flux/Time)
 - LEO (1 year) 5krad
 - MEO (5 year) 25krad
 - GEO (15 year) 100krad
 - Availability

Mission Analysis - Components – FPGA (COTS+RHBD)

• AMD/Xilinx

- 65nm Virtex-5QV
- 20nm RT Kintex
- 7nm XQR Versal
- Lattice
 - Nexus CrossLink-NX

• Microchip

- 130nm ProASIC/RTAX2000/RTAX4000
- 65nm RTG4
- 28nm RT Polarfire
- Nanoxplore
 - 65nm NG-Medium
 - 28nm NG-Ultra
 - 28nm Ultra300

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

Components – COTS SRAM FPGA – SEU σ – Proton

- SEU proton (64MeV) cross-section (10⁻¹⁵ cm²) reported in the literature
- Devices tested
 - 28nm Artix 7
 - 20nm Kintex
 - 16nm Zynq Ultrascale+
 - 7nm Versal ACAP
- Recorded cross-sections have been rounded
- Measurement from different test campaigns included
 - CRAM Configuration RAM
 - BRAM Block RAM
 - URAM Ultra RAM
 - FF Logical register
- Noticeable is the reduction in cross-section with technology

Technology	28nm	20nm	16nm	7nm
CRAM	5 to 8	1 to 2.5	0.12 to 3.5	3e-2
BRAM	1 to 7	2.5 to 4.5	0.6 to 1	1
URAM				0.3
FF	5	2	0.3	

Components – COTS SRAM FPGA – SEU σ – Neutron

- SEU neutrons (10MeV) cross-section (10⁻¹⁵ cm²) reported in the literature
- Devices tested
 - 28nm Artix 7
 - 20nm Kintex
 - 16nm Zynq Ultrascale+
 - 7nm Versal ACAP
- Recorded cross-sections have been rounded
- Measurement from different test campaigns included
 - CRAM Configuration RAM
 - BRAM Block RAM
 - URAM Ultra RAM
 - FF Logical register
- Noticeable is the reduction in cross-section with technology
- Single Event Rate (SER) for CRAM provided for LEO orbit

Technology	28nm	20nm	16nm	7nm
CRAM	7	2.5	0.25 to 0.35	2.2e-2
BRAM	7		1 to 3	1.2
URAM				0.3
FF				

Configuration Memory Rates

	Improve-			
	per bit, per day	ment*	Node	
Virtex-II	3.99E-07	1	130 nm	
Virtex-4	2.63E-07	1.517	90 nm	
Kintex-7	1.41E-08	28.298	28 nm	
UltraScale	7.56E-09	52.778	20 nm	
UltraScale+	1.33E-09	300.000	16 nm	

Components – COTS SRAM FPGA – SEU σ – HI

- SEU heavy ion saturation cross-section (10⁻⁹ cm²) reported in the literature
- Devices tested
 - 28nm Artix 7
 - 20nm Kintex
 - 16nm Zynq Ultrascale+
 - 7nm Versal ACAP
- Recorded cross-sections have been rounded
- Measurement from different test campaigns included
 - CRAM Configuration RAM
 - BRAM Block RAM
 - FF Logical register
- Noticeable is the reduction in cross-section with technology

Technology	28nm	20nm	16nm	14nm	7nm
CRAM	2	1 to 8			
BRAM	1.2				
FF					

→ THE EUROPEAN SPACE AGENCY

10

Components – COTS Flash FPGA – SEU σ – HI

- SEU heavy ion saturation cross-section (10⁻⁹ cm²) reported in the literature
- Devices tested
 - 28nm-M RT Polarfire
 - 28nm-L Nexus CrossLink-NX
- Recorded cross-sections have been rounded
- Measurement from different test campaigns included
 - BRAM Block RAM
 - FF Logical register
- Please note that for COTS FPGAs also all the peripheral and processing blocks should also be radiation tolerant (i.e. no SEL and SEFI preferably)

Technology	28nm - M	28nm - L
BRAM	1	1e-2
FF	1	0.2

Components – RHBD FPGA – SEU σ – HI

- SEU heavy ion saturation cross-section (10⁻⁹ cm²) reported in the literature
- Devices tested
 - 150nm-M RTAX2000
 - 65nm-M RTG4
 - 65nm-X Virtex-5QV
 - 65nm-NX NG-Medium
 - 28nm-NX NG-Ultra
- Recorded cross-sections have been rounded
- Measurement from different test campaigns included
 - CRAM Configuration RAM
 - BRAM Block RAM
 - FF Logical register

Technology	150nm-M	65nm-M	65nm-X	65nm-NX	28nm-NX
CRAM		1 to 8	30	5	
BRAM		100	120	60	
FF	20	6.5	28 no Fil 3 with Fil	4	

👝 🧕 🛌 📕 💥 💶 🕂 🔜 🚥 🛤 🏧 🔶 THE EUROPEAN SPACE AGENCY

Components – RHBD FPGA – SEU σ – MBU

- The number of transistors affected by a radiation event increases with
 - advancing technology node
 - Increasing SEE LET
- The increasing number of affected transistors causes a multiple bit upset (MBU) and/or multiple cell upset (MCU)
- These MBU/MCU make the recovery from an upset increasingly more difficult.
- Without careful attention of MBU and MCU the effectiveness of TMR would be limited by common cause failures (CCF)
- With careful analysis of the MBUs and memory cell placement in advanced technology nodes, the occurrence of MBUs at least for proton, neutron SEE can be contained

• Shown are the MBU generated in the 28nm Xilinx Zynq (F. Benevenuti et al.)

Type of	Type of Examples				Neutrons		
memory	SEU	-	a Parucies	Heavy Ions	14 MeV 0°	14 MeV 180°	(Epi)Thermal
BRAM	SBU 1-1-1	*	100.0%	82.0%	93.4%	97.1%	95.4%
	MBU 2-1-2	××		16.2%	4.7%	2.9%	—
	MBU 1-2-2	×					4.5%
	Others			1.8%	1.9%		0.1%
CRAM	SBU 1-1-1		97.6%	38.1%	76.7%	79.9%	78.1%
	MBU 2-2-2		2.4%	41.9%	16.9%	15.5%	0.0%
	MBU 2-1-2	×	0.0%	4.4%	3.5%	2.1%	0.0%
	MBU 1-2-2	X		-	0.3%	1.5%	17.8%
	MBU 2-2-3	*		3.0%	1.3%	0.5%	0.0%
	MBU 2-2-4	×		0.2%	-	0.5%	—
	MBU 2-3-4			8.3%	0.6%		0.0%
	MBU 2-3-5		_	0.6%	0.3%	_	0.0%
	Others			3.4%	0.3%	_	4.1%

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

Reliability, MTTF and Availability - Introduction

- The COTS FPGAs are SEU susceptible and the availability/reliability requires to be an analysed
- The simplest model considers an operating state, a repairing state and a failed stated in case an additional failure occurs
- The reliability R(t) as a function of time for a constant failure rate λ is r(t) = $e^{-\lambda t}$
- The mean time to failure (MTTF) is

 $\mathsf{MTTF} = \int_0^\infty r(t) dt = \frac{1}{\lambda}$

• Given a constant repair rate μ

MTTF = $\frac{\mu}{\lambda^2}$

• Given the fixed mean time to repair (MTTR) the availability is

Availability = $\frac{uptime}{uptime+downtime}$ = = $\frac{MTTF}{MTFF+MTTR}$

Reliability and MTTF – Memory Scrubbing

- Memory is scrubbed (blind) with a SEC-DED error protection scrubbing scheme with period is T
- Memory bit failure rate is λ for M words of width w'=w+c bits where w is the number of bits in the word and c the number of correction bits
- The reliability after each scrubbing cycle per bit is R(t)

 $r_{s}(t) = R(T)^{n} r_{0}(t)$ $R(T) = r_{0}(T) \text{ and } n = \text{floor}(t/N)$ with $r_{0}(t) = e^{-\lambda w't} - w'(1 - e^{-\lambda t}) e^{-\lambda(w'-1)t}$, with t<T
We have $R(T) = 1 - \frac{M(\lambda w')^{2}}{2}$

• The mean time to failure (MTTF) is

$$MTTF_S = \int_0^\infty r_s(t)dt = \frac{2}{MT\lambda^2 w'^2}$$

Reliability and MTTF – TMR

- TMR is implemented with 3 registers and one voter
- The reliability R(t) as a function of time for a constant failure rate λ is $r_{TMR}(t) = 3e^{-2\lambda t} - 2e^{-3\lambda t}$
- The mean time to failure (MTTF) is

 $MTTF_{TMR} = \int_0^\infty r_{TMR}(t) = \frac{5}{6\lambda}$

- Please note that this is less than for no TMR. However the reliability increases significantly when repair at rate μ is included
- The mean time to failure for this TMR configuration can be calculated to be

$$MTTF_{TMR+R} = \int_0^\infty r_{TMR+R}(t) = \frac{5}{6\lambda} + \frac{\mu}{6\lambda^2}$$

The MTTF is significantly improved

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📰 🚼 🔚 🔚 🔤 🖛 🚳 🍉 📲 🚼 🖬 📰 📾 📾 🏜 🍁 🔹 材 The European space agency

Reliability and MTTF – TMR with scrubbing

- TMR is implemented with 3 registers and one voter with repair
- The configuration memory for the TMR is scrubbed (blind)
- The reliability R(t) as a function of time for a constant failure rate λ is

 $r_{TMR+R+S}(\mathsf{t})=r_{TMR+R}(\mathsf{t})*r_S(\mathsf{t})$

• The mean time to failure (MTTF) can be calculated by considering two parallel independent processes.

$$\begin{split} MTTF_{TMR+R+S} &= \int_0^\infty r_{TMR+R+S}(t) dt \\ &= \big(\frac{1}{MTTF_{TMR+R}} + \frac{1}{MTTF_S}\big)^{-1} \end{split}$$

• Reliability calculations show also that the reliability and MTTF increases with increasing number of TMR stages

Reliability and MTTF – TMR + Common Cause Failure

- The application of TMR has the potential to improve the reliability of the system significantly based on the assumption that there is no common cause failure (CCF).
- In presence of the common cause failure the gains from the implementation of TMR are limited
- Causes for CCF are single point failure (SPF), multiple bit upsets (MBU), common mode failures (CMF)
- Given the falure rate λ , repair rate μ and CMF rate λ_C the mean time to failure (MTTF) can be calculated to be (after MJ Cannon et al.)

 $\mathsf{MTTF} = \int_0^\infty R(t) = \frac{2\lambda + \lambda_C + \mu}{6\lambda^2 + 5\lambda\lambda_C + \lambda_C^2 + \mu\lambda_C}$

• With increasing repair and decreasing failure rate the TMR are limited by the CCF rate

$$\mathsf{MTTF} = \int_0^\infty R(t) = \frac{1}{\lambda_C}$$

 $\begin{array}{l} S_0 - \text{Normal operation} \\ S_1 - \text{Impaired operation} \\ S_2 - \text{Failed state} \\ \mu - \text{Repair rate} \\ \lambda - \text{Single module failure rate} \\ \lambda_C - \text{CCF failure rate} \end{array}$

Reliability and MTTF – New ECSS ASIC+FPGA Standard Cesa

- The current standard ECSS-Q-ST-60-02C is going to be replaced by
 - ECSS-E-ST-20-40 Engineering standard
 - ECSS-Q-ST-60-03 Product Assurance standard
- The ASIC and FPGA will follow the same qualification flow as for space equipment and units
- This implies that dependability and with it availability and reliability analysis are required
- For COTS devices this will be of specific importance

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

Local TMR

- Type of spatial redundancy where only the sequential elements (D Flip Flops) in the circuit are triplicated, and their outputs compared by a single majority voter.
- It can detect and correct SEUs in registers.
- Smallest area overhead penalty, since only registers are triplicated, not the combinational logic.
- Can be implemented by the designer at HDL or netlist level, with the appropriate synthesis tools.

Challenges

- Local TMR only protects against SEUs directly in the registers (DFFs).
- If an SET propagates through the combinational logic and is captured at a sampling clock edge, the voter will receive 3 identical, but false, values and the error won't be detected.

Note: TMR cannot be used by the designers for SEU protection in configuration memories of SRAM FPGAs. Other techniques are used in those cases (presented later)

Distributed TMR

- Type of spatial redundancy where the complete computation paths are triplicated, including combinational logic, sequential elements, and voters.
- Single clock and reset lines are used.
- It can detect and correct upsets in registers and combinational logic and can clear errors via feedback to avoid their accumulation.
- Can be implemented by the designer at HDL or netlist level, with the appropriate synthesis tools.

Disadvantages

• Higher area and power consumption overheads, since all registers, CL and voters are triplicated.

Global (or Full) TMR

- Type of spatial redundancy where all circuit elements, including DFF, combinational logic and TMR voters are triplicated. The clock and reset trees are also triplicated.
- Triplicating the clock trees also gives protection against SETs in the clock generation logic (clock tree).
- Global TMR is the strongest TMR method for SEU mitigation (in principle), BUT…

Challenges

- Skew among the triplicated clock trees introduces further design challenges and may reduce mitigation strength.
- The additional circuit area required by the Full TMR scheme may even result in an actual increase on the error cross section of the circuit.
- The designer should confirm that the design tools properly support this TMR option and can manage the timing challenges, before using it.

Embedded user memory TMR

- Voted results can be written back to the memories to correct the errors
- Data refresh via feedback only needed for longer time storage. May not be needed for regularly updated data.
- Data refresh can also be done automatically with a counter, periodically going through the addresses and writing back the voted results.

Disadvantages

- Higher resource utilization overheads, since the memory blocks are triplicated, plus voters and counter logic.
- Dual- port memories are needed for this scheme. But effectively they can only be used as single port memories by the user, due to the feedback used for the data refresh.
- Memory EDAC may be a more efficient solution, in terms of resources (discussed later)

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🔚 📲 🚍 📲 🚍 🛶 🚳 🦕 📲 🚼 🖬 📟 📾 🔤 🛶 🔶 THE EUROPEAN SPACE AGENCY

Block (Module) level TMR

- Improved resilience to MBUs due to the physical separation of the DFFs in the different blocks, reducing the probability of upsetting the TMR sets.
- It can block errors from propagating to other areas of the system.
- Can use partial reconfiguration for the erroneous block, reducing overall scrubbing time and energy.
- Good solution for regularly reset/flushable systems

Challenges:

- Timing synchronisation (controlled skew) between the different functional blocks
- Re-synchronisation of the erroneous block with the others -> need additional detection signals to know when one of the blocks are in failure.
- Possible accumulation of errors if blocks are not regularly reset (or flushed).
- Reliability of BTMR systems actually drops over time faster than non-TMR systems (!) (reference: M. Berg, SERESSA, 2019)
- Regular resets may affect availability.

💻 📰 📰 🚍 💳 🛶 🛯 🖉 🔚 📰 📲 🚍 🚔 🔤 🔤 🚱 🍉 🕄 🚼 🛨 📰 📾 📾 🌬 🛊 🖓 🔿 The European space agency

Radiation Mitigation Techniques References

- Additional radiation mitigation techniques can be found
 - S. Habinc Suitability of reprogrammable FPGAs in space applications (2001)
 - R. Weigand SEE Analysis and Mitigation for SEE Analysis and Mitigation for
 - FPGA and Digital ASIC Devices (2005)
 - D Merodio Codinachs et al. Overview of FPGA activities in the European Space Agency (2009)
 - F. Siegle et al. Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications (2015)
- In addition, an ECSS handbook on ASIC and FPGA mitigation techniques has been published and presented
 - A. Fernandez-Leon New ECSS Handbook on "Techniques for Radiation Effects Mitigation in ASICs and FPGAs" (2015)
- For COTS components for ESA missions a guideline has been published, which lists mitigation techniques for all relevant SEE (e.g. SEFI, SEL, ...)
 - Guidelines for the utilization of COTS components and modules in ESA
- Each of the FPGA supplier have extensive literature and application on the implementation of mitigation techniques for their device

Graph: © Melanie D. Berg, 2019 ²⁶

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

SEE mitigation implementation

- Commercial tools by Synopsys and Siemens/Mentor support TMR, Safe FSM, Hamming-3 mitigation schemes for different FPGA technologies
- Implementation of temporal redundancy and TMR is supported with different options as wells as by Siemens/Mentor with Precision HiRel, by Synopsys with Synplify and by Xilinx with XTMR.
- Research tools are underdevelopment to increase the reliability of the FPGA design against radiation SEE. E.g. with the Politecnico di Torino:
 - Physical Design Description Place and Router
 - PyXEL tool to analyse the relationship between the configuration memory and the physical implementation
 - Veri-PLACE tool for the analysis an mitigation of SEU effects in the FPGA configuration

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

💳 🔜 📲 🚍 💳 🕂 📲 🔚 📲 🔚 📲 🚍 🚔 🔤 🛶 🔯 🛌 📲 🚼 🛨 📰 🗰 🕸 👘 👘 🔶 The European space agency

Verification and Validation

- The radiation measurements can be compared against the prediction from fault injectors: FLIPPER2, FT-UNSHADES2, XTRC-V5FI, TURTLE, UFRGS, ...
- The fault predictor should take into account
 - Effect of the configuration memory on the logic fabric
 - Multiple effects from a single upset
- With partitioning of the design onto the FPGA fabric the occurrence of Single Event Multiple Upset in configuration memory SEMU can be minimised
- The radiation test data can also be correlated with the fault injection results by comparing the CRAM upsets per design upset with the CRAM upsets per scrubbing action.
- Tools are also provided by Siemens/Mentor to
 - Determine with formal verification the resilience against faults
- The Synopsys Z10X supports also fault simulations and coverage

Depiction of SEMU

Analysis

- Mission Analysis
- Component Evaluation

Mitigation

- Reliability
- Classification
- Implementation
- Verification/Validation

Conclusion

Conclusion

- Mission requirements affecting microelectronics design listed
- For potential COTS and RHBD potential FPGA candidates listed
- Provided
 - SEE evaluation results for COTS FPGAs
 - Examples how radiation mitigation increases
 - Reliability
 - Mean time to failure
 - Availability
 - Overview of the different TMR architectures
- Discussed
 - Radiation mitigation implementation details and tools
 - Verification and Validation
- Hopefully provided a starting point for radiation mitigated digital design for space

Conclusion

- Grateful for contributions
 - D. Merodio-Codinachs
 - K. Marinis
 - M. Talis
 - L. Santos
 - A. Urbon