
© 2023 The MathWorks, Inc.

Artificial Intelligence workflows for FPGA & SoC

using a Deep Learning Processor

Lunar Crater Detection

Stephan van Beek

svanbeek@mathworks.com

European Technical Specialist

SoC/FPGA/ASIC Design Flows

Pierre Harouimi

pharouim@mathworks.com

Application Engineer - Artificial Intelligence

11

Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Summary All

22

Artificial Intelligence on Embedded Devices

Airborne Image

Analysis

Airborne Image

Analysis

Autonomous DrivingAutonomous Driving Industrial InspectionIndustrial Inspection

Medical Image

Analysis

Medical Image

Analysis

Wireless Modulation

Classification

Wireless Modulation

Classification

Radar Signature

Classification

Radar Signature

Classification

Satellite NavigationSatellite Navigation

33

Industry Trends

44

(Source: embedded.com / AspenCore Media)

https://www.embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/

5

Machine learning has been deployed on ground segment applications

for several years

Telemetry Outlier Detection Geospatial Analytics

➔ now moving into space

66

Deep Learning and AI in space

https://www.electronicdesign.com/technologies/embedded-revolution/article/21212499/mathworks-a-promising-future-for-ai-and-autonomy-in-space?cid=?s_eid=PSM_25538%26%01A+Promising+Future+for+AI+and+Autonomy+in+Space|LinkedIn|PostBeyond

77

Deep Learning Helps Detect Gravitational Waves
Hunting for Black Holes with Artificial Intelligence

▪ Max Planck Institute used AI and laser interferometry to detect

gravitational waves caused by space-time distortions in our solar system.

▪ AI is used to predict misalignments for key optics.
Link to user story

https://www.mathworks.com/company/mathworks-stories/deep-learning-ai-and-laser-interferometry-detects-gravitational-waves.html

8

The biggest challenge to deploying AI algorithms on-board

is verification and validation

EUROCAE WG114 – SAE G34

EASA Concept Paper:

First usable guidance for Level 1 & 2

machine learning applications

Commercial Aviation

99

Case-study: Lunar Crater Detection Deep Neural Network
Why Crater Detection?

▪ Surfaces such as the moon

contain hazards: surface

features that may damage a

spacecraft (e.g. slopes,

craters, rocks)

▪ On-board Hazard Detection

and Avoidance (HDA) is

needed to ensure safe

autonomous landing

1010

AI-Driven System Design and Collaboration

Model design and

tuning

Hardware

accelerated training

Interoperability

AI Modeling

Integration with

complex systems

System verification

and validation

System simulation

System Design

Data cleansing and

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud,

desktop

Deployment

Modelling and Validation
of Deep Neural Networks Deployment and Validation

of Deep Neural Network on FPGAs

1111

Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural
Network
▪ Get first results faster with low code / no code approach
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All

Efficient Modelling of a Lunar Crater
Detection Deep Neural Network

1313

Featured Example: Detecting Objects with YOLO v2

▪ You Only Look Once

▪ Real-time object detector

▪ Surveillance, Target Recognition

Predictions

YOLO

CNN

Network

Decode

Predictions

Build, test, and deploy a deep learning solution that can detect objects in images and video.

https://www.mathworks.com/help/vision/ug/train-an-object-detector-using-you-only-look-once.html

1414

Lunar Lander Video from PANGU

Planet and Asteroid Natural Scene Generation Utility

DEMO

1616

Lunar Crater Detection in MATLAB with Deep Learning DEMO

18

Demo workflow of the Lunar Crater Detection DEMO

Data (image) preprocessing:
augmentation, labelling

Import external Yolov2 model

and translate to MATLAB code

Experiment and tune

model in MATLAB

Verify and Validate

the tuned model

Low code
No code AI

Interoperability with
TensorFlow, PyTorch

and ONNX

Verification and Validation
of AI models

Low code
No code AI

Interoperability with
TensorFlow, PyTorch

and ONNX

Verification and Validation
of AI models

How to accelerate prototyping steps to
get first results faster

2121

Accelerate prototyping to get first results faster

Many interactive no code apps in multiple domains:

data handling, images, signals, features extraction, etc.

Easy and common data workflow: import, visualize,

manipulate, train/test, export the MATLAB code.

Users can build and share custom apps with other users

(who have or don’t have MATLAB)

2222

▪ MATLAB® apps are interactive applications

written to perform technical computing tasks

▪ Apps are included in many MATLAB products

▪ The Apps tab of the MATLAB Toolstrip shows

you the apps that you currently have installed

MATLAB apps – Definition

24

I spend too much time labelling
my data, having too many images
in my dataset

I spend too much time labelling
my data, having too many images
in my dataset

I have multiple interactive apps
that facilitates labelling – images,

videos, signals, lidar and more

I have multiple interactive apps
that facilitates labelling – images,

videos, signals, lidar and more

2525

Spend less time preprocessing and labeling data
Synchronize disparate time series, filter noisy signals, automate labeling of video, and more.

Use labeling apps for deep learning workflows like

semantic segmentation

Data cleansing and

preparation

Simulation-

generated data

Human insight

Data Preparation

2626

Labeler Apps

Image Labeler (Computer Vision Toolbox) Video Labeler (Computer Vision Toolbox)

Lidar Labeler (Lidar Toolbox)

▪ Label ground truth for image, video, and

lidar data

▪ Important for training networks for:

– Classifiers

– Object Detectors

– Segmentation

▪ Features:

– Create label definitions and attributes.

– Semi automated or automated labeling

with built-in or custom algorithms

– Blocked processing support (image)

– Superpixel automation (Image, Video)

https://www.mathworks.com/help/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/vision/ref/imagelabeler-app.html

2929

Data Preparation: label continuous images from video DEMO

Interactive labelling

Label manually

each crater

3030

Data Preparation: label continuous images from video DEMO

Interactive labelling

3131

Data Preparation: label continuous images from video DEMO

Interactive labelling

3232

Data Preparation: label continuous images from video DEMO

Export Labels to workspace

3434

Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually

craters for first frames

Frame #1

3535

Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually

craters for first frames

Frame #2

3636

Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually

craters for first frames

Frame #3

3737

Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Labels are

automatically

computed

Frame #4 → #end

3838

I am a domain expert, but don’t
have any skills in AI modelling…
I am a domain expert, but don’t
have any skills in AI modelling…

I have multiple interactive apps
used for AI modelling, to build,

train and test models.

I have multiple interactive apps
used for AI modelling, to build,

train and test models.

3939

Spend less time visualizing, training and testing AI models

▪ AI modelling apps: visualize, train, test,

experiment, optimize models

▪ Important for:

– Signals, time series, images

– Have results quickly and export MATLAB code to

automate process

– Learn while using apps – no AI skills needed to

manipulate

▪ Features:

– AutoML for classification & regression models

– Design, train, test, tune & quantize deep learning

models

– Reinforcement learning

Classification/Regression Learner App

Deep Network Quantizer App

Experiment Manager App

4040

AI Modeling: interactive network designer

Model design
and tuning

Hardware

accelerated training

Interoperability

AI Modeling

Visualize, customize, (re)train & (re)test deep learning model trough interactive apps

4141

AI Modeling: tune deep learning model* DEMO

Model design

and tuning

Hardware

accelerated training

Interoperability

AI Modeling

*This deep learning model has been imported in MATLAB from ONNX –

presented in the next part

Tune AI models with hyperparameters optimization trough interactive apps

4242

AI Modeling: tune deep learning model* DEMO

*This deep learning model has been imported in MATLAB from ONNX – presented in the next part

You can put any

hyperparameters with

range of values

4343

AI Modeling: tune deep learning model DEMO

You can tune with

Exhaustive Sweep or

Bayesian Optimization

4444

AI Modeling: tune deep learning model DEMO

You can run optimization

sequentially, in parallel or

in batch mode

4545

AI Modeling: tune deep learning model DEMO

You just click run, and

you can debug each

experiment

4646

AI Modeling: tune deep learning model DEMO

Interactive and live

training experiments

4747

AI Modeling: tune deep learning model DEMO

Select best model

regarding metrics

4848

AI Modeling: tune deep learning model DEMO

Export model and

generate code

4949

What does HPC usage look like for Model Training?

0

100

200

300

400

500

600

700

1 2 3 4 5 6

U
s
a

g
e

 (
m

in
s
)

Month

HPC Usage for Model Training

Model Development Model Tuning

5151

I don’t have enough hardware
resources to tune my neural network
model

I don’t have enough hardware
resources to tune my neural network
model

You can scale training and tuning on
servers and cloud in one click

You can scale training and tuning on
servers and cloud in one click

5252

Scale Up to Parallel Multi-GPU Training – no code low code

5353

Hardware acceleration and scaling are critical for training
MATLAB accelerates AI training on GPUs, cloud, and datacenter without IT skills

Model design and

tuning

Hardware

accelerated

training

Interoperability

AI Modeling

5454

Optimized crater detection model

Low code
No code AI

Interoperability with
TensorFlow,

PyTorch and ONNX

Verification and Validation
of AI models

Enable cross-language collaboration by
interoperating with TensorFlow and PyTorch

5656

Why bring MATLAB & Python together?

Take advantage of both languages and tools

Bring different teams together for a common project

Make your your flow better and whole workflow more

robust

5757

I need to use a network built and
trained in PyTorch
I need to use a network built and
trained in PyTorch

You can import and convert
PyTorch/TensorFlow DL models into

MATLAB with native functions

You can import and convert
PyTorch/TensorFlow DL models into

MATLAB with native functions

5858

Why bring MATLAB & Python together for Deep Learning?

Simulink,

Simscape

Code

generationVnV

Apps,

Low code

5959

Let’s Explore What We Can Do With Imported Model

Pruning, Quantization
Code Generation

Visualization,
Verification

Analyze Network
Retrain

System Integration
(with Simulink)

importONNXNetwork

ONNX Model

Custom Training Loop

Automatic Differentiation

Weight Sharing

Reinforcement Learning

Automated Driving

Control Systems

MATLAB Neural Network Model

6161

Import and convert PyTorch & TensorFlow models

exportNetworkToTensorflow

importTensorFlowNetwork importNetworkFromPyTorch

importONNXNetworkexportONNXNetwork

https://www.mathworks.com/help/deeplearning/ref/exportnetworktotensorflow.html
https://www.mathworks.com/help/deeplearning/ref/importtensorflownetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importnetworkfrompytorch.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html

6262

Training and Evaluation

▪ trainYOLOv2ObjectDetector –

train a YOLO v2 object detector

using training data

▪ Accelerated training using GPU

>> [detector, info] =

trainYOLOv2ObjectDetector(trainData,lgraph,options);

>> detector =

yolov2ObjectDetector with properties:

ModelName: 'Car'

Network: [1×1 DAGNetwork]

ClassNames: {'Car'}

AnchorBoxes: [3×2 double]

>> [detector, info] = trainYOLOv2ObjectDetector(trainData,lgraph,options)

Training on single GPU.

|==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |

| | | (hh:mm:ss) | RMSE | Loss | Rate |

|==|

| 1 | 1 | 00:00:02 | 7.41 | 54.8 | 0.0010 |

| 4 | 50 | 00:01:14 | 0.90 | 0.8 | 0.0010 |

| 7 | 100 | 00:02:26 | 0.86 | 0.7 | 0.0010 |

| 10 | 150 | 00:03:36 | 0.81 | 0.7 | 0.0010 |

|==|

6363

Training and Evaluation

▪ Set of functions to evaluate trained

network performance
– evaluateDetectionMissRate

– evaluateDetectionPrecision

– bboxPrecisionRecall

– bboxOverlapRatio

>> [ap,recall,precision] =

evaluateDetectionPrecision(results,stopSigns(:,2));

evaluateDetectionPrecision

6464

Interoperability: Import Yolov2 ONNX network into MATLAB DEMO

Model design and

tuning

Hardware

accelerated training

Interoperability

AI Modeling

66

Generate massive

realistic data with

physics-based

Verify and validate –

certify – the requirements

Generate

C/C++/HDL/CUDA code

automatically

Integrate to a unified

testing lifecycle

Why AI for MBD users?

67

Deep Learning blocks library

MATLABFunction Block
Converter for

PyTorch/TF models

If no corresponding library

If corresponding library

Deploy AI model on embedded device

Low code
No code AI

Interoperability with
TensorFlow, PyTorch

and ONNX

Verification and Validation
of AI models

Use methods from native MATLAB
or developed by community to verify
your deep learning models

70

The biggest challenge to deploying AI algorithms on-board

is verification and validation

EUROCAE WG114 – SAE G34

EASA Concept Paper:

First usable guidance for Level 1 & 2

machine learning applications

Commercial Aviation

7171

Why verification is essential in your workflow?

7272

Verification is present in many steps in the V&V cycle

7474

Are my network robust
enough?
Are my network robust
enough?

7575

Neuron Coverage for Deep Learning robustness

https://github.com/matlab-deep-learning/neuron-coverage-for-deep-learning

https://github.com/matlab-deep-learning/neuron-coverage-for-deep-learning

7676

Neuron Coverage for our crater detector DEMODEMO

Integration with

complex systems

System verification

and validation

System simulation

System Design

7777

Is Neural Coverage meaningful and stable? DEMODEMO

1 - Create “equivalent” network

– same architecture and sizew1

w3

w2

𝑤1

2

w3

𝑤2

2

7878

Is Neural Coverage meaningful and stable? DEMODEMO

w1

w3

w2

𝑤1

2

w3

𝑤2

2

100% same
predictions

2 – Verify predictions

7979

Is Neural Coverage meaningful and stable? Yes and no DEMODEMO

w1

w3

w2

𝑤1

2

w3

𝑤2

2

3 – Compare coverage

67%
covered

33%
covered?

8080

« Lift a stone and find nothing is to move forward »
Me

Source: Ideogram.ai

8282

Deep Learning Toolbox Verification Library

Verify deep learning network robustness against adversarial examples

and to compute the output bounds for a set of input bounds.

+
Crater

No craterδ Neural

Network

verified unproven

Formal Verification

violated

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library

https://www.mathworks.com/help/deeplearning/deep-learning-verification.html

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/help/deeplearning/deep-learning-verification.html

8383

Deep Learning Toolbox Verification Library DEMODEMO

+δ
Integration with

complex systems

System verification

and validation

System simulation

System Design

8484

Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 20

8585

Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 30

8686

Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 50

8787

Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 100

8888

Average precision vs noise perturbation DEMODEMO

Perturbation

Av
er

ag
e p

re
cis

ion

8989

#Craters vs noise perturbation DEMODEMO

Perturbation

Av
er

ag
e p

re
cis

ion

Perturbation

Number of craters

9797

Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All

Efficient Deployment of a Lunar Crater
Detection Deep Neural Network on FPGAs

Deploying Deep
Neural Networks on

FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications

Deploying Deep
Neural Networks on

FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications

Deep Learning on FPGA from
MATLAB in 5 steps

101101

Lunar Crater Detection

102102

FPGA is a good choice for lower power deep learning applications

▪ Qualified for space, radiation hardened

▪ Low Latency

▪ High speed I/O connectivity

▪ Handling data input from multiple sensors (cameras, LIDAR, ... sensors)

▪ Adding extra capabilities beyond AI without requiring an extra chip

GPU ARM FPGA ASIC

Speed High Low High High

Power
Consumption

High Low Low Lowest

Engineering
Cost

Medium Low Medium High

103103

Challenges of Deploying Deep Learning to FPGA Hardware:

Each stride is an 11x11x3 matrix multiply-accumulate

→105M floating-point multiply operations!

55

55

96

filters

stride=4

224

224

11x11

96 filters of 11x11x3 of 32-bit parameters →140k bytes

11x11

→1.16M bytes of activations

104104

Challenges of Deploying Deep Learning to FPGA Hardware

conv

1

conv

2

conv

3

conv

4

conv

5
fc6 fc7 fc8input Total

140K 1.2M 3.5M 5.2M 1.8M 148M 64M 16M
Parameters

(Bytes)
n/a 230 M

1.1M 728K 252K 252K 168K 16K 16K 4K
Activations

(Bytes)
588K 3.1 M

105M 223M 149M 112M 74M 37M 16M 4MFLOPs n/a 720 M

Off-chip RAM

Block RAM

DSP Slices

105105

Deploying Deep Learning to FPGA Hardware Requires Collaboration

140K 1.2M 3.5M 5.2M 1.8M 148M 64M 16M
Parameters

(Bytes)

conv

1

conv

2

conv

3

conv

4

conv

5
fc6 fc7 fc8

n/a

input Total

230 M

1.1M 728K 252K 252K 168K 16K 16K 4K
Activations

(Bytes)
588K 3.1 M

105M 223M 149M 112M 74M 37M 16M 4MFLOPs n/a 720 M

ResizeResize
Acquire

data

Acquire

data

Mem i/fMem i/f

Optimize:

• Network / layers

• Fixed-point quantization

• Processor micro-architecture

Output /

display

Output /

display

106106

The Ultimate Challenge

You can either find somebody:

who has horn (FPGA),

or looks like a horse (Deep Learning),

or is purple (Application)

but not all 3 ….
(after all purple unicorns do not exist)

107107

System Requirements Drive AI Design and

the need for Collaboration

Systems

Engineer

(purple)

Deep Learning

Practitioner

(horse)

Hardware

Engineer

(horn)

Camera specsCamera specs

AccuracyAccuracy

LatencyLatency

CostCost

PowerPower

108108

Application knowledge

AI-Driven System Design and Collaboration

Model design and

tuning

Hardware

accelerated training

Interoperability

AI Modeling

Integration with

complex systems

System verification

and validation

System simulation

System Design

Data cleansing and

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud,

desktop

Deployment

Deep Learning knowledge

FPGA knowledge

109109

AI-Driven System Design and Collaboration

Model design and

tuning

Hardware

accelerated training

Interoperability

AI Modeling

Integration with

complex systems

System verification

and validation

System simulation

System Design

Data cleansing and

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud,

desktop

Deployment

110110

Customizable Deep Learning Processor

Percentage resource

usage on ZCU102 board

Activation

Data Read/Write

Arbitrator

Activation

Data Read/Write

Arbitrator

Weight

Data Read

Arbitrator

Weight

Data Read

Arbitrator

Debugger/

Instruction

Data Read/Write

Arbitrator

Debugger/

Instruction

Data Read/Write

Arbitrator

Memory Access Arbitrator Modules

Processing Modules

DDR Memory

Vendor Memory Interface IP

Profiler &

Debugger

Utilities

Top-level

Scheduler

Module

Conv

Kernel

Conv

Kernel

FC

Kernel

FC

Kernel

Custom

Kernel

Custom

Kernel

FPGA Deep Learning Processor IP

AXI4 Masters

AXI4

Slave

▪ Spend FPGA resource for only

the layer kernels used in your

network

0

10

20

30

40

50

60

70

80

90

Full DUT
Processor

Conv Only
no LRN

FC Only LSTM
Processor

LUT BRAM DSP

111111

HDL Coder

Deep Learning HDL Processor steps

Layer

control

instructions

Weights &

Activations

IP core interface

DL Processor

HDL

Application

logic

Deep Learning Processor

Quantize
Compile &

Deploy Network

FPGA Bitstream

Analyze

Profile

Build ProcessorCustomize

Estimate

112112

Crater Detection Example

112

Application

logic

Pre-processing:

Extract regions and

resize

Pre-processing:

Extract regions and

resize

Post-processing:

Annotate and label

Post-processing:

Annotate and label

Inference: Predict

using trained network

Inference: Predict

using trained network
FPGA

DEMO

113113

Run Deep Learning on FPGA from MATLAB in 5 steps

113

>> wobj=dlhdl.Workflow('Network', detector.Network, 'Bitstream', 'zcu102_single’);
>> dn = wobj.compile;
>> wobj.Target = dlhdl.Target('Xilinx', 'Interface', 'Ethernet', 'IPAddress', '192.168.4.2');
>> wobj.deploy;
>> [predict_out, speed] = wobj.predict(img_pre,'Profile','on');

115115

>> deepNetworkDesigner

Application

logic

Profile FPGA Prototype and Iterate in MATLAB

Layer

control

instructions

Weights &

Activations

R
e
-t

ra
in

Deploying Deep
Neural Networks on

FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications

Compression Techniques for Deep

Neural Networks

117117

Two Compression Techniques

Pruning

deep neural networks

Quantization of

deep neural networks

118

Taylor Approximation Pruning

Remove unimportant

parts of the network

Trained

Network

Pruned +

Retrained

Pruning process

Evaluate importance

of weights

Remove the least

important weights

Fine Tuning

(training)

Retrain

prunableNetwork = taylorPrunableNetwork(dlnet)

prunableNetwork =
TaylorNetworkPruner with properties ...

119

Projected Layer Pruning

High-dimensional space of input and

output neurons holds redundancies

Technical article on projected layer pruning

https://www.mathworks.com/company/newsletters/articles/compressing-neural-networks-using-network-projection.html?s_tid=srchtitle

120120

Collaborate to Quantize Network

Systems

Engineer

Deep Learning

Practitioner

Hardware/Software

Engineers
Fully

Connected

Module

Convolution

Module

Processor Control

Memory Access

A
c
ti
v
a

ti
o

n
s

A
c
ti
v
a

ti
o

n
s

A
c
ti
v
a

ti
o

n
s

x

+/-

Σ

32
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

DEMO

AccuracyAccuracy

LatencyLatency

CostCost

PowerPower

121121

Deep Network Quantizer - Int8 Quantization

3

Quantize and Validate

4
Export quantized

network

2

Calibrate

1

Import

Network

123123

Application

logic

Quantize Deep Learning Network and Processor in MATLAB

Layer

control

instructions

Weights &

Activations

>> deepNetworkQuantizer

124124

Application

logic

Converge on an FPGA-Optimized Deep Learning Network

Layer

control

instructions

Weights &

Activations

% Create target object
hTarget = dlhdl.Target(…)

% Create workflow object, using the target
hW = dlhdl.Workflow(…);

% Compile the network
hW.compile;

% Program the bitstream and deploy the compiled network and weights
hW.deploy;

% Run prediction
[score, speed] = hW.predict(img, ‘Profile’, ‘on’);

Parameters Speed

48 MB 127.1 fps

44 MB 433.5 fps

Quantize

>> deepNetworkQuantizer

int8 Bitstream

Deploying Deep
Neural Networks on

FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications

Customizing and Integrating

Deep Learning Processor IP

126126

Customizable DL Processor to save FPGA Area

Percentage resource

usage on ZCU102 board

Activation

Data Read/Write

Arbitrator

Activation

Data Read/Write

Arbitrator

Weight

Data Read

Arbitrator

Weight

Data Read

Arbitrator

Debugger/

Instruction

Data Read/Write

Arbitrator

Debugger/

Instruction

Data Read/Write

Arbitrator

Memory Access Arbitrator Modules

Processing Modules

DDR Memory

Vendor Memory Interface IP

Profiler &

Debugger

Utilities

Top-level

Scheduler

Module

Conv

Kernel

Conv

Kernel

FC

Kernel

FC

Kernel

Custom

Kernel

Custom

Kernel

FPGA DL Processor IP

AXI4 Masters

AXI4

Slave

▪ Spend FPGA resource for only

the layer kernels used in your

network

0

10

20

30

40

50

60

70

80

90

Full DUT
Processor

Conv Only
no LRN

FC Only LSTM
Processor

LUT BRAM DSP

127127

Application

logic

Generate Custom Deep Learning Processor HDL and IP Core

% Create a custom processor object
hPC = dlhdl.ProcessorConfig;

% Customize processor characteristics
hPC.TargetFrequency = 300;
hPC.ProcessorDataType = 'int8';
hPC.setModuleProperty('conv', 'ConvThreadNumber', 64);
hPC.setModuleProperty('fc', 'FCThreadNumber', 16);

% Estimate performance
snet = getLogoNetwork;
hPC.estimatePerformance(snet)

% Generate HDL and IP core using HDL Coder
dlhdl.buildProcessor(hPC);

HDL Coder

Custom Processor

IP core interface

DL Processor

HDL

• Configure processor settings

• Parallel threads, frequency, memory sizes,

enable/disable modules (conv/fc/…)

• Quantized or single precision floating point

• Target frequency

• Target any hardware

• Synthesizable RTL with AXI mappings

• Automatic Xilinx or Intel implementation

128128

Deep Learning Processor (DLP) Configuration

HDL Coder

IP core generation

Workflow

Under the hood:

Simulink model

HDL IP core and

bitstream

129129

Estimate Resource Utilization and Performance

for Custom Processor Configuration

Reference zcu102_int8 bitstream configuration:

▪ Possible performance of 13982 frames per second (FPS) to a Xilinx ZCU102 ZU9EG device

▪ Digital signal processor (DSP) slice count — 2520 (available) / 805 (used)

▪ Block random access memory (BRAM) count — 912 (available) / 388 (used)

Requirements:

▪ Target performance of 500 frames per second (FPS) to a Xilinx ZCU102 ZU4CG device

▪ Digital signal processor (DSP) slice count — 240 (available)

▪ Block random access memory (BRAM) count — 128 (available)

DEMO

130130

Estimate Resource Utilization and Performance for Custom DLP

estimatePerformance

estimateResources

131131

optimizeConfigurationForNetwork

https://www.mathworks.com/help/releases/R2022b/deep-learning-hdl/ref/dlhdl.processorconfig.optimizeconfigurationfornetwork.html

132132

Integrate the DL Processor into your bigger system

▪ Generate Generic DL Processor IP core

▪ Define clean input/output frame hand-shaking protocol

▪ Drop the generated DL IP core into your bigger system

Processor Config

GenerateGenerate

133133

AI-Driven System Design and Collaboration

Model design and

tuning

Hardware

accelerated training

Interoperability

AI Modeling

Integration with

complex systems

System verification

and validation

System simulation

System Design

Data cleansing and

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud,

desktop

Deployment

134134

Integrate and Validate YOLO v2 on SoC platforms
Design and Deploy Pre-Processing

135135

Integrate and Validate YOLO v2 on SoC platforms
Challenge: how to verify communication with memory access and handshake?

▪ Easier modeling of the pre/post processing together with DL Processor

DL Processor IPDL Processor IP

ConvConv FCFC

Scheduler

DDR Memory

AXI4 Master

Post-ProcessingPost-ProcessingPre-ProcessingPre-Processing

Memory access &

Hand shaking
Memory access &

Hand shaking

136136

Integrate and Validate YOLO v2 on SoC platforms
Solution: Deep Learning HDL Processing System Simulink block

▪ Easier modeling of the pre/post processing together with DL Processor

Post-ProcessingPost-Processing

Pre-ProcessingPre-Processing

Memory access &

Hand shaking

Memory access &

Hand shaking

DEMO

137

138138

Integrate and Validate YOLO v2 on SoC platforms
Prove correct communication with memory access and handshake

Error = 6%, Accuracy = 94%

140140

Utility to export DL Deployment AXI read/write into a file

(for ARM deployment)

Enables you to initialize the DL Processor IP from your own host target (instead of using MATLAB)

HDL Coder Reference designHDL Coder Reference design

Vendor Memory Interface IP

Custom DL

Processor IP

Custom DL

Processor IP

ConvConv FCFC

Scheduler

Pre-

Processing

IP core

DDR Memory

Post-

Processing

IP core

Deep Learning

NetworksMATLAB

dlhdl.Workflow()

dln File Target Deployment File

Deploy Simple Adder Network

by using MATLAB Deployment

Script and Deployment

Instructions File example

https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html

141

Network Examples

Network Examples Application Area Type Release

VGG16/VGG19 Classification CNN

ResNet18/ResNet50 Classification/Detection CNN

YOLO v2 Object detection CNN

MobileNet v2 Classification/Detection CNN

1-Dimentional CNN networks Classification/Detection CNN

Segmentation networks Segmentation CNN

LSTM networks Signal processing RNN

YOLO v3 Object detection CNN, MIMO

GRU network Signal processing RNN

YAMNet (Audio toolbox) Classification/Detection CNN

Projected LSTM Signal processing RNN

142142

Application

logic

Collaborate to Converge on Deep Learning FPGA Implementation

FPGA

CPU

GPU

Tune for system requirements

Prototype from MATLAB

Configure and generate RTL

Deep Learning HDL Toolbox

AI Modeling

System Design

Deployment

143143

Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All

144144

Why MATLAB & MathWorks for AI?

Domain-specialized workflows
for engineering and science

Multi-platform deployment of
full applications and systems

Platform productivity PeopleInteroperability with Python and
DL Python-based frameworks

145145

Examples

146146

Training Resources

https://matlabacademy.mathworks.com/

https://matlabacademy.mathworks.com/

147147

MathWorks training options for AI topics

148148

Resources for Further Learning

▪ Crater Detection - Deep Learning

– Deep Learning Solutions in MATLAB

– Deep Learning Verification Library

– Deep Learning Models

– MATLAB with TensorFlow and PyTorch

– Importing Models from TensorFlow, PyTorch, and ONNX

– TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers

– What’s New in Interoperability with TensorFlow and PyTorch

▪ Crater Detection - Deep Learning ➔ FPGA

– Deep Learning HDL Toolbox

– Deep Learning HDL Toolbox Supported Networks, Layers, Boards and Tools

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/online/2022/matalb-with-tensorflow-and-pytorch-for-deep-learning.pdf
https://blogs.mathworks.com/deep-learning/2022/03/18/importing-models-from-tensorflow-pytorch-and-onnx/
https://www.mathworks.com/help/deeplearning/ref/importtensorflowlayers.html#mw_8c774782-3a98-4dfc-838a-50eb34865d97
https://blogs.mathworks.com/deep-learning/2022/10/04/whats-new-in-interoperability-with-tensorflow-and-pytorch/
https://www.mathworks.com/products/deep-learning-hdl.html
https://www.mathworks.com/help/deep-learning-hdl/ug/supported-networks-layers-boards-and-tools.html

MATLAB speaks Startups

150150

MATLAB and Simulink for Startups

Get Low-Cost Access to MATLAB and Simulink

Research projects, develop prototypes, and take ideas from concept to
production

Talk to our team to learn more

151151

MATLAB

Suite

MATLAB with 40+ add-

on products

MATLAB and

Simulink Suite

MATLAB and Simulink

with 90+

add-on products

MATLAB and Simulink for Startups
Get Low-Cost Access to MATLAB and Simulink

152152

• Get MATLAB, Simulink, and add-on products at

low startup pricing

• Support from application engineers and

technical support

• Training options in local languages, including

50% off training credits

• Co-marketing opportunities to showcase your

technology or products

MathWorks Startups Program benefits

	Intro
	Slide 0
	Slide 1: Agenda
	Slide 2: Artificial Intelligence on Embedded Devices
	Slide 3: Industry Trends
	Slide 4
	Slide 5: Machine learning has been deployed on ground segment applications for several years
	Slide 6: Deep Learning and AI in space
	Slide 7: Deep Learning Helps Detect Gravitational Waves Hunting for Black Holes with Artificial Intelligence
	Slide 8: The biggest challenge to deploying AI algorithms on-board is verification and validation
	Slide 9: Case-study: Lunar Crater Detection Deep Neural Network Why Crater Detection?
	Slide 10: AI-Driven System Design and Collaboration

	Agenda
	Slide 11: Agenda
	Slide 12
	Slide 13: Featured Example: Detecting Objects with YOLO v2
	Slide 14: Lunar Lander Video from PANGU
	Slide 16: Lunar Crater Detection in MATLAB with Deep Learning
	Slide 18: Demo workflow of the Lunar Crater Detection
	Slide 19

	Low code
	Slide 20
	Slide 21
	Slide 22: MATLAB apps – Definition
	Slide 24
	Slide 25: Spend less time preprocessing and labeling data
	Slide 26: Labeler Apps
	Slide 29: Data Preparation: label continuous images from video
	Slide 30: Data Preparation: label continuous images from video
	Slide 31: Data Preparation: label continuous images from video
	Slide 32: Data Preparation: label continuous images from video
	Slide 34: Data Preparation: temporal automation algorithms
	Slide 35: Data Preparation: temporal automation algorithms
	Slide 36: Data Preparation: temporal automation algorithms
	Slide 37: Data Preparation: temporal automation algorithms
	Slide 38
	Slide 39: Spend less time visualizing, training and testing AI models
	Slide 40: AI Modeling: interactive network designer
	Slide 41: AI Modeling: tune deep learning model*
	Slide 42: AI Modeling: tune deep learning model*
	Slide 43: AI Modeling: tune deep learning model
	Slide 44: AI Modeling: tune deep learning model
	Slide 45: AI Modeling: tune deep learning model
	Slide 46: AI Modeling: tune deep learning model
	Slide 47: AI Modeling: tune deep learning model
	Slide 48: AI Modeling: tune deep learning model
	Slide 49: What does HPC usage look like for Model Training?
	Slide 51
	Slide 52: Scale Up to Parallel Multi-GPU Training – no code low code
	Slide 53: Hardware acceleration and scaling are critical for training
	Slide 54: Optimized crater detection model

	TF and PyTorch
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Why bring MATLAB & Python together for Deep Learning?
	Slide 59: Let’s Explore What We Can Do With Imported Model
	Slide 61: Import and convert PyTorch & TensorFlow models
	Slide 62: Training and Evaluation
	Slide 63: Training and Evaluation
	Slide 64: Interoperability: Import Yolov2 ONNX network into MATLAB
	Slide 66
	Slide 67: Deploy AI model on embedded device

	Verif
	Slide 69
	Slide 70: The biggest challenge to deploying AI algorithms on-board is verification and validation
	Slide 71: Why verification is essential in your workflow?
	Slide 72: Verification is present in many steps in the V&V cycle
	Slide 74
	Slide 75: Neuron Coverage for Deep Learning robustness
	Slide 76: Neuron Coverage for our crater detector
	Slide 77: Is Neural Coverage meaningful and stable?
	Slide 78: Is Neural Coverage meaningful and stable?
	Slide 79: Is Neural Coverage meaningful and stable? Yes and no
	Slide 80
	Slide 82: Deep Learning Toolbox Verification Library
	Slide 83: Deep Learning Toolbox Verification Library
	Slide 84: Deep Learning Toolbox Verification Library
	Slide 85: Deep Learning Toolbox Verification Library
	Slide 86: Deep Learning Toolbox Verification Library
	Slide 87: Deep Learning Toolbox Verification Library
	Slide 88: Average precision vs noise perturbation
	Slide 89: #Craters vs noise perturbation

	FPGA
	Slide 97: Agenda
	Slide 98
	Slide 99

	Deploy on FPGA
	Slide 100
	Slide 101: Lunar Crater Detection
	Slide 102: FPGA is a good choice for lower power deep learning applications
	Slide 103: Challenges of Deploying Deep Learning to FPGA Hardware:
	Slide 104: Challenges of Deploying Deep Learning to FPGA Hardware
	Slide 105: Deploying Deep Learning to FPGA Hardware Requires Collaboration
	Slide 106: The Ultimate Challenge
	Slide 107: System Requirements Drive AI Design and the need for Collaboration
	Slide 108: AI-Driven System Design and Collaboration
	Slide 109: AI-Driven System Design and Collaboration
	Slide 110: Customizable Deep Learning Processor
	Slide 111: Deep Learning HDL Processor steps
	Slide 112: Crater Detection Example
	Slide 113: Run Deep Learning on FPGA from MATLAB in 5 steps
	Slide 115: Profile FPGA Prototype and Iterate in MATLAB

	Optimize model
	Slide 116
	Slide 117: Two Compression Techniques
	Slide 118
	Slide 119: Projected Layer Pruning
	Slide 120: Collaborate to Quantize Network
	Slide 121: Deep Network Quantizer - Int8 Quantization
	Slide 123: Quantize Deep Learning Network and Processor in MATLAB
	Slide 124: Converge on an FPGA-Optimized Deep Learning Network

	Integrate on FPGA
	Slide 125
	Slide 126: Customizable DL Processor to save FPGA Area
	Slide 127: Generate Custom Deep Learning Processor HDL and IP Core
	Slide 128: Deep Learning Processor (DLP) Configuration
	Slide 129: Estimate Resource Utilization and Performance for Custom Processor Configuration
	Slide 130: Estimate Resource Utilization and Performance for Custom DLP
	Slide 131: optimizeConfigurationForNetwork
	Slide 132: Integrate the DL Processor into your bigger system
	Slide 133: AI-Driven System Design and Collaboration
	Slide 134: Integrate and Validate YOLO v2 on SoC platforms Design and Deploy Pre-Processing
	Slide 135: Integrate and Validate YOLO v2 on SoC platforms Challenge: how to verify communication with memory access and handshake?
	Slide 136: Integrate and Validate YOLO v2 on SoC platforms Solution: Deep Learning HDL Processing System Simulink block
	Slide 137
	Slide 138: Integrate and Validate YOLO v2 on SoC platforms Prove correct communication with memory access and handshake
	Slide 140: Utility to export DL Deployment AXI read/write into a file (for ARM deployment)
	Slide 141: Network Examples
	Slide 142: Collaborate to Converge on Deep Learning FPGA Implementation

	Summary
	Slide 143: Agenda
	Slide 144: Why MATLAB & MathWorks for AI?
	Slide 145: Examples
	Slide 146: Training Resources
	Slide 147: MathWorks training options for AI topics
	Slide 148: Resources for Further Learning
	Slide 149: MATLAB speaks
	Slide 150
	Slide 151
	Slide 152

