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Efficient Modelling of a Lunar Crater Detection Deep Neural Network
= Get first results faster with low code / no code approach

= Enable cross-language collaboration by interoperating with TensorFlow and PyTorch

= Verification and Validation of Al models
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Efficient Deployment of a Lunar Crater Detection Deep Neural

Network on FPGAs

= Deploy Deep Learning models onto FPGA/SoC platforms
= Optimize model performance through on-target profiling and quantization workflows
" Pre-processing sensor data for Deep Learning applications
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Artificial Intelligence on Embedded Devices

Satellite Navigation

Airborne Image
Analysis

Autonomous Driving Industrial Inspection

Medical Image
Analysis
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Industry Trends

Designs with Al accelerator cores increasing

32%

ASICs with Al Cores
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23%

FPGAs with Al Cores

Designs with Al Accelerator Cores
2020 m2022

Source. Wilson Research Group and Siemens EDA, 2022 Functional Verification Study
Unrestricted | © Siemens 2022 | Siemens Digital Industries Software | 2022 Functional Verification Study SI E M E NS




Embedded development makes use of advanced technology capabilities

Embedded Al and machine learning attract the most attention, followed by embedded vision and speech capabilities

—-
Total Interest 50% 47% 36% 29% 26% 21% 18%
Considering 24%
24%
19%
15% e
Currently Using
Embedded Al Machine learning ~ Embedded vision = Embedded speech  Other Al/cognitive  Augmented Reality Virtual Reality (VR)
model-based capabilities (AR) capabilities capabilities
capabilities
(Source: embedded.com /AspenCore Media) Total Respondents

ASPENCORE | 13

embedderd 27. which of the following advanced technologies are you currently using in your embedded systems?
/ 28. Which of the following advanced technologies are you considering using in your future embedded systems?

survey


https://www.embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/
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Machine learning has been deployed on ground segment applications
for several years = now moving into space

Telemetry Outlier Detection Geospatial Analytics
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Deep Learning and Al in space
e e |

TECHNOLOGIES # EMBEDEED REVOLUTION

A Promising Future for Al and Autonomy in Space

|n..| Moo, AL

Machine learning and deep learning are the next frontier in Al, and thus, in space
applications. To quicken the integration process, engineers need software tools that
they're familiar with.

For example, NASA’s Mars Curiosity Rover is armed with an instrument called ChemCam, which
analyzes the composition of Martian rocks and soils. But to do this, ChemCam first must point itself
at a target. Giving the pointing instructions from the ground is a cambersome process, limited by
whether the right communications satellites are within view of Curiosity and even by the length of
time it takes commands and data to travel from Mars to Earth (known as the light-time constraint).
For this reason, Curiosity uses an autonomous targeting algorithm to point its instrument during

times that ground commanding isn’t available.


https://www.electronicdesign.com/technologies/embedded-revolution/article/21212499/mathworks-a-promising-future-for-ai-and-autonomy-in-space?cid=?s_eid=PSM_25538%26%01A+Promising+Future+for+AI+and+Autonomy+in+Space|LinkedIn|PostBeyond
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Deep Learning Helps Detect Gravitational \Waves
Hunting for Black Holes with Artificial Intelligence

Camara looking at IFO DarkiPort
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= Max Planck Institute used Al and laser interferometry to detect
gravitational waves caused by space-time distortions in our solar system.

= Al is used to predict misalignments for key optics.

Link to user story 7



https://www.mathworks.com/company/mathworks-stories/deep-learning-ai-and-laser-interferometry-detects-gravitational-waves.html
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The biggest challenge to deploying Al algorithms on-board
IS verification and validation

Commercial Aviation
EUROCAE WG114 — SAE G34
EASA Concept Paper:

First usable guidance for Level 1 & 2
machine learning applications




Case-study: Lunar Crater Detection Deep Neural Network

Why Crater Detection?

Surfaces such as the moon
contain hazards: surface
features that may damage a
spacecraft (e.g. slopes,
craters, rocks)

On-board Hazard Detection
and Avoidance (HDA) is
needed to ensure safe
autonomous landing

4\ MathWorks
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Al-Driven System Design and Collaboration

Data Preparation Al Modeling

||||||‘|| Data cleansing and Model design and
preparation tuning

@ . s Hardware
[_eH e
Human insight —aa  accelerated training

_Dﬁ SlTLENE * Interoperability
generated data

System Design Deployment

Integration with . Embedded devices
complex systems

'DE] System simulation L_ﬂ.% Enterprise systems

¢ Edge, cloud,

— x System verification
desktop

—+/ and validation

|

Modelling and Validation
of Deep Neural Networks

|

Deployment and Validation

of Deep Neural Network on FPGAs
10
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Efficient Modelling of a Lunar Crater Detection Deep Neural

16.00u

Network

= Get first results faster with low code / no code approach
= Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
= Verification and Validation of Al models

Break
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Efficient Deployment of a Lunar Crater Detection Deep Neural

Network on FPGAs

= Deploy Deep Learning models onto FPGA/SoC platforms
= Optimize model performance through on-target profiling and quantization workflows
" Pre-processing sensor data for Deep Learning applications

MathWorks
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Next steps
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Efficient Modelling of a Lunar Crater
4 Detection Deep Neural Network
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Featured Example: Detecting Objects with YOLO v2

Build, test, and deploy a deep learning solution that can detect objects in images and video.

= You Only Look Once
= Real-time object detector
= Surveillance, Target Recognition

YOLO Decode
CNN —> Predictions
Network

Predictions

13


https://www.mathworks.com/help/vision/ug/train-an-object-detector-using-you-only-look-once.html
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Lunar Lander Video from PANGU DEMO

PANGU v4 simulation of a Lunar Lander
descent onto Malapert mountain

Modelling/rendering: PANGU v4.00/PANGU v4.02
Base DEM: LRO 3880x3880@480m Lunar south pole DEM
PANGU enhancements: twelve 3880x3880 layers down to 0.12m at landing
975029 craters with diameters in the range 1m to 480m
13668 boulders with diameters in the range 0.5m to 15m
Hapke BRDF: w=0.33, h=0.05, B0=0.95, s=8, L=0.05
Sun: azimuth 113.5°, elevation 1.35° (at the south pole)
Shadows: static per-vertex shadow map with point source Sun
PANGU camera: FOV 70°, 1280x720, QE=1, gain 5e-/DN, full well 334000e-
2.2ms frames at 20Hz (played at 30Hz: 1.5x real-time)
Noise: dark current ~300k e-/pixel/s, readout noise 120e-
Radiation: 2 million protons/s/m”2, isotropic flux, 0.01mm pixels
Trajectory: ballistic+tmain-engine with double-divert before landing
Note: very high noise/radiation to emphasize camera model

Planet and Asteroid Natural Scene Generation Utility 14
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Lunar Crater Detection in MATLAB with Deep Learning

1

fps: 61.5866
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Demo workflow of the Lunar Crater Detection

@ata (image) preprocessing: L @xpenment and tune
. . 14/

Cog model in MATLAB

{
0“'0%,e augmentation, labelling

Import external Yolov2 model ~~ Verify and Validate
and translate to MATLAB code Q@the tuned model

Ing
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Low code
No code Al

Interoperability with

TensorFlow, PyTorch
and ONNX

Verification and Validation
of Al models




Low code
No code Al

Interoperability with
TensorFlow, PyTorch
and ONNX

Verification and Validation
of Al models
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Accelerate prototyping to get first results faster

L.

> Many interactive no code apps in multiple domains:
data handling, images, signals, features extraction, etc.

Easy and common data workflow: import, visualize,
manipulate, train/test, export the MATLAB code.

>

> Users can build and share custom apps with other users
(who have or don’t have MATLAB)

21



MATLAB apps — Definition

- MATLAB® apps are interactive applications

FAVDRTES

- Apps are included in many MATLAB products Ay i

|||||

= The Apps tab of the MATLAB Toolstrip shows | T
you the apps that you currently have installed 2.8 .
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| spend too much time labelling
my data, having too many images
in my dataset

| have multiple interactive apps

that facilitates labelling — images,
videos, signals, lidar and more

\ o

* MathWorks:
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Spend less time preprocessing and labeling data
Synchronize disparate time series, filter noisy signals, automate labeling of video, and more.

- -
s & =

rE: T
AUTOMOTIVE

ERECIN T
Fjn e e Ground Truth
¥ 1o Labeler
D t P t' :"- : -' SIGNAL PROCESSING AND COMMUMNICATIOMNS
dla rreparation o )
o
Audio Labeler Signal Labeler
||||||‘|| Data Cle_anSIng and S L bt & [MAGE PROCESSING AND COMPUTER VISION
preparation AT 5 &) B
Ny Image Labeler Lidar Labeler Videtibeler
9 Human insight
Simulation- B E e S B R A e e el el

generated data

Use labeling apps for deep learning workflows like
semantic segmentation

25



Labeler Apps

Label ground truth for image, video, and
lidar data

Important for training networks for:

Classifiers
Object Detectors
Segmentation

Features:

Create label definitions and attributes.

Semi automated or automated labeling
with built-in or custom algorithms

Blocked processing support (image)
Superpixel automation (Image, Video)

4\ MathWorks:

Lidar Labeler (Lidar Toolbox)

26


https://www.mathworks.com/help/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/vision/ref/imagelabeler-app.html
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Data Preparation: label continuous images from video DEMO

Interactive labelling

. Video Labeler - craterl sbelingSession - o 4
[T 51
T & (s (0 B &
Losd Seer  Import Show RO Labels ] : Autormate  View Label  Expert
- *  Labels> OnHover =| @ Configure Automation Surmmary | Lakls >
Figf _-'F.". AUTOREATE t_._l-EHIH'L- '-.L.IF_.I'I'I.'-m_ EXPOaRT
RO Labeh Semnelabth | | Framies 1 280 T20_rimee |
L K =)
Laeai Supianal atirite
Label manually e
each crater  crater 1 O

200 A0 GO0 B0 TR 1400 29
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Data Preparation: label continuous images from video DEMO

Interactive labelling

A Video Labeler - craterlabelingSestion

— = I T

Loyau = Algerithrn
e BN Laiyaty Select HWI"I‘I'ITI'-

Load Save Impost taattiploodel e g Sutwmaate  Viewlsbel Export
- *  shely® On Hover = | Configure Autarmation Sommary  Labeli
FILE B BUTIMAATE ._I.?I A LI 'II1RIF.1 : '._.lm_-l.l-lT a
ROl Lsbeks frene Lahels | frames 1380w TH0_taw [

200 400 600 ROO 1000 1200 30
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Data Preparation: label continuous images from video

Interactive labelling

DEMO

4\ Video Labeber - craterl abefmighecsion

- o b
LASEL = o7
- - A ¥ = 4
(Rl ol || Betames (R H | &
Lo
Lload Seve Dgpen W"u Labeiié < e Autarmate  View Labsl  Epon
- v  Libelsw | OnHover = @ Comfigure Automanicn Sommary  Labek
Fit bW BUTOMATE LARELMG FPLLVELRART EXRORT =
RIO| Ladbsls Scena Latwl | frarmes 12800720 raw
= B ®
Labei Tubiabed sdtritate
B Crater
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200 4D0 L] BO0 1000 1200 31



* MathWorks:

Data Preparation: label continuous images from video DEMO

Export Labels to workspace

= | &

amate View Label | Export
Summary || Labels %

SUMMARY EXPORT

Export video labels tp a file or workspace.

32
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Data Preparation: temporal automation algorithms DEMO
Create and import a custom automation algorithm to automatically label your data

Label manually
craters for first frames

S Frame #1

34
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DEMO
Create and import a custom automation algorithm to automatically label your data

A Video Labeter

Data Preparation: temporal automation algorithms

Label manually
craters for first frames

Frame #2

* Sang Lakal

10t 0d s | mim ][] | e ] f [t



* MathWorks:

Data Preparation: temporal automation algorithms

DEMO
Create and import a custom automation algorithm to automatically label your data

Label manually
craters for first frames

Frame #3

™ 5 | e m=mm
e A e : 36
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Data Preparation: temporal automation algorithms

DEMO
Create and import a custom automation algorithm to automatically label your data

. Video Labeier

= Scene Labals

Labels are
automatically
computed

Frame #4 - #end

37
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| am a domain expert, but don’t
have any skills in Al modelling...

| have multiple interactive apps

used for Al modelling, to build,
train and test models.

* MathWorks:

\ o
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Spend less time visualizing, training and testing Al models

- Al modelling apps: visualize, train, test, e e el SRR e
experiment, optimize models S . '
- Important for: B s =S = EEE
— Signals, time series, images b _:;i: el -

— Have results quickly and export MATLAB code to =7 Ll o T ——
automate process

 Leam while using apps —no Al skils needed t
i | B r. "

manipulate

- Features: 5 = 22 -
— AutoML for classification & regression models | : = :n
— Design, train, test, tune & quantize deep learning = == —
models s

— Reinforcement learning

Deep Network Quantizer App

39
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Al Modeling: interactive network designer

Visualize, customize, (re)train & (re)test deep learning model trough interactive apps

i 'J:n-'.lr'.-r" Zergem = UgEl K
Al Modeling : = =
Model design - e
and tuning B e E=.
£ -
5 - wd
s Hardware & =
—33 accelerated training B o =
B =
g H b E
* Interoperability .
a -
:E ..|.|.. ;

40



Al Modeling: tune deep learning model* DEMO

Tune Al models with hyperparameters optimization trough interactive apps

Al Modeling

Model design
and tuning

== Hardware

—aa accelerated training

* Interoperability

~ Result Details

Baseline Tuning 2/7/2020, 12:53:36 P I 9/16 Trials
(View Experimani Source)
@ Complete 9 A Stopped U] 0@ Error 0
O Running 1 = Queued -] X Canceled 0
Trial Status Prograss Elapsed Time mylnitialLearn... convFilterSize Training Accu... Training Loss Validation nc._'
1 & Complete I 100 0% 0 hr 0 min 16 sec 1.00000-6 | 3. 0000 % 10,
2 & Complete I 100.0% 0 hr 0 min 15 sec 1.00008-5 1.0000 25.7813 2.1228 204
3 @ Complete I 100.0% 0 hrO'min 14 sec 00001 3.0000 f4.8438 1.0878 42
4 & Complate d-1-330".-;- 0 hr O min 16 sec 0.0005 3.0000 90.6250 0.4648 45,
5 & Complste P 100.0% 0 hr O min 15 sac!

VISUALIZATIONS
Training Plot (Trial 10, Result1, Baseline Tuning)

-
< 100

B

§

§ ,leEpnchi - L (Epoch2 i 1 ]

< 9 10 20 30 40 50 60 70 80 80 100
Iteration

w —_ — -

§§L:EPGCE L 1 L L 1 jEpoch2 L 1 1

0 10 20 30 40 50 60 70 80 a0 100

lteration

*This deep learning model has been imported in MATLAB from ONNX —
presented in the next part

4\ Mathworks

41
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Al Modeling: tune deep learning model* DEMO

Experimenti | Result1 Experimenti® =

Description

Add description here

Hyperparameters

Strateqgy: [ Exhaustive Sweep - ]

In the training function, access hyperparameter values by using dot notation.
Name Values
Solver ['sgdm”, "rmsprop”, "adam"] YO ucan p Ut an y
InitialLearnRate [0.1, 0.01, 0.001] — hyperparameters with

range of values

(&b Add |({ Delste|

Training Function

| Experimenti_training1 |

[0 New| () Edit

*This deep learning model has been imported in MATLAB from ONNX — presented in the next part 42



Al Modeling: tune deep learning model

Hyperparameters

Strateqy: [Bayesian Opflimization

~)

In the training function, access hyperparameter values by using dot notation.

Mame

Range Type Transform
Solver ["sgdm”, "rmsprop”, "adam"] real none
InitialLearnRate [0.1, 0.01, 0.001] real none

Bayesian Optimization Options

|25 Add | Delete|

Mame

Value
Maximum time {in seconds) Inf
Maximum number of trials 30

d MathWorks:

DEMO

You can tune with
Exhaustive Sweep or
Bayesian Optimization

43



Al Modeling: tune deep learning model

E::::I [ Open ~ E Mode rﬂequential

-

Clust Sequential
New % Save v uster q
* 3. Duplicate - Poal Size| Simultaneous
FILE ENVIROMMENT _| Batch Sequential

Experiment Browser

~ [=] TrainNetworkProject4

Batch Simultaneous

+ & Experimenti
E Result1

4\ MathWorks

DEMO

You can run optimization

sequentially, in parallel or
in batch mode

>
Run

RN

44



Al Modeling:

tune deep learning model

a_ﬂ MathWorks:

DEMO

You just click run, and
you can debug each
experiment

EII:::I 3 Open = E

5 Cluster

Mew % avE Layout

* 3 Duplicate - Pool Size
FILE EMVIROMMENT

Maode [Sequential

EXECUTION

>
Run

-

Experiment Browser
~ [=] TrainNetworkProject4
~ & Experiment
Ed Result1

[> Run
Run selected experiment

a, Debug
fL’E‘ Debug selected experiment

b ¢

45
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Al Modeling: tune deep learning model DEMO

| ‘Expsnmart| Expgrrnonid | Assulld = =]
= Exhaustive Semep Hesult
Expariment Siadt. W2021, 112344 AM 0% Telals
(i Exearirnesl Sodice) . .
) @ Cargia 0 A Soped 8 9 Eor 0 Interactive and live
O Running 4 L hsusd 5 X Cancalsd o
B Discardad o . . .
training experiments
Trisd | Sintus Actions | Progress ' Elapsed Time | Salver iniialleamBats | AvérageFrecl..  |AMSE | Losa | LeamFRate :
1 £ fterabon M S 160%  Ohr3mn &3 sec 3gam 0. 1000 0.5078 0.3 (R
2 © Ttergtion = B E0%  Ohr3 e 43 5ec | rmaproo a.1888 8:2723 .76 g, 1808
3 ) lherahon L] I T 0% Ohrdmen 4l sec) adam a.1880 [N 5] p.7223 i 1080
4 £ Itzenlian ] I 5 0% O b e 43 sec | apdm 0108 [RCESES [ o,2108]
& = X | 0% mapion 2.1 |
(] = Queued A | 0.0% aam 9.2140
T = Quayed & | O apam LE
8 = Cueied A | — 0% mspree 9.0818
) = Qiumuad X | s &0am 9.9818
e -
Training Pt (Trial 1, Resuliz, Expenmentt)
1 f—
1 . ——— Loamats
E o ol
31 L L 1 1 | | ]
L} 5 1o 15 20 25 113 A5
[teration
5 5| \ ==
3
E 1 1 1 i 1 1 I
2 5 10 15 20 25 T £
Itaration
42| \
& i | | 1 i | o |
L 5 1o 15 20 25 n 35
fteraticn
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Al Modeling: tune deep learning model

* MathWorks:

DEMO

Select best model
regarding metrics

REVITYY MKE3ULID FILICR | ANINUITATIIND | CAFU] a
Experimenti Experimenit | Result1 » Q
- Exhaustive Sweep Result
Experiment1 Start: 9/1/2023, 12:01:12 PM Y A 5/9 Trials
(View Experiment Source)
@ Complete 9 A Stopped 0 ® Error 0
O Running 0 = Queued 0 X Canceled 0
I Discarded 0
i
Trial Status Actions |Progress Elapsed Time Solver InitialLearnRate AveragePreci... RMSE Loss LeamRate
1 & Complete ] I 100.0% 0 hr 3 min 33 sec|sgdm 0.1888 8.0888 ©8.9341 a4.8725 @.1808
2 & Complete ] I 100.0% 0 hr 3 min 0 sec| rmsprop @.1808 2.0808 @.53482 @.7859 @.1808
3 & Complete ] I 100.0% 0 hr 3 min 1 sec|adam 2.1000 2.0000 8.8222 8.6761 2.1000
4 &% Complete "] I 100.0% 0 hr 2 min 44 sec|sgdm 0.9100 0.0040 B.5854 @.2555 8.9100
5 & Complete | I 100.0% 0 hr 3 min 2 sec| rmsprop 2.9100 8.00825 B.5476 0.2999 8.09100
] @ Complete | I 100.0% | O hr 2 min 39 sec|adam 2.8188 8.0833 ©.5355 8.2368 B.e180
7 @ Complete | I 100.0% | O hr 2 min 47 sec|sgdm 2.0010 8.0@57 8.5565 8.3036 o.e@10
3 & Complete ] I 100.0% 0 hr 2 min 43 sec | rmsprop 9.90108 8.09036 ©.5515 0.3842 @.0e12
] & Complete ] I 100.0% 0 hr 2 min 54 sec| adam 0.0818 2.0043 8.6275 ©.3938 @.0e1@

47



* MathWorks:

Al Modeling: tune deep learning model DEMO

Export model and
generate code

RCVICYY RCOULID FILICK | AN ITATIND | CAFUN] 5 F Y
Experimenti Experimenit | Result1 » Q
~ Exhaustive Sweep Result 15| W Training Output —
Experiment1 Export training output for selected tria I ©/9 Trials
(View Experiment Source)
A Stopped 0 ® Error 0
Results Table = Queued 0 X Canceled 0
Export the results of all trials as a MATLAS table
i
Trial Status Actions |Progress Elapsed Time Solver InitialLearnRate AveragePreci... RMSE Loss LeamRate
1 & Complete ] I 100.0% 0 hr 3 min 33 sec|sgdm 0.1888 8.0888 ©8.9341 @.8725 @.1808
2 & Complete ] I 100.0% 0 hr 3 min 0 sec| rmsprop @.1808 2.0808 @.53482 @.7859 @.1808
3 & Complete ] I 100.0% 0 hr 3 min 1 sec|adam 2.1000 2.0000 8.8222 8.6761 2.1000
4 &% Complete "] I 100.0% 0 hr 2 min 44 sec|sgdm 0.9100 0.0040 B.5854 @.2555 8.9100
5 & Complete | I 100.0% 0 hr 3 min 2 sec| rmsprop 2.9100 8.00825 B.5476 0.2999 8.09100
] @ Complete | I 100.0% | O hr 2 min 39 sec|adam 2.8188 8.0833 ©.5355 8.2368 B.e180
7 @ Complete | I 100.0% | O hr 2 min 47 sec|sgdm 2.0010 8.0@57 8.5565 8.3036 o.e@10
3 & Complete ] I 100.0% 0 hr 2 min 43 sec | rmsprop 9.90108 8.09036 ©.5515 0.3842 @.0e12
] & Complete ] I 100.0% 0 hr 2 min 54 sec| adam 0.0818 2.0043 8.6275 ©.3938 @.0e1@
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What does HPC usage look like for Model Training?

HPC Usage for Model Training
700

600

500

w
£ 400
£ :
Y Model Development Model Tuning
§3oo
>

200

100

; o . -
1 2 3 4 5 6

Month

49



| don’t have enough hardware
resources to tune my neural network
model

You can scale training and tuning on

servers and cloud in one click

* MathWorks:
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Scale Up to Parallel Multi-GPU Training — no code low code

! 24ab54976aT:1 (matlab) - noY . s = = :

ﬁ. Experiment Manager e dan

zXPERIMENT MANAGER

L] Cpen -
of =
New H o Layout —
> i Duplicate -

ALE

ENVIRDMNN

* [ TrainNetworkProjectl
&, Experiment]

g Adkd

Setup Function

semanticSeq EMTuming

'1_.—' !*Ju:l.'.r (=) Edit |

Metrics

Standard taining and validaiion metrics (such &5 accuracy. RMSE, and loss) ane compaled by defaust

Custom Melrics

{5 Add

4\ MathWorks:
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Hardware acceleration and scaling are critical for training
MATLAB accelerates Al training on GPUs, cloud, and datacenter without IT skills

AAzure >

<3

Al Modeling

Model design and E lWS
tuning
Hardware v—’

NVIDIA.

| o o]

accelerated

|_oH o] . )
training

* Interoperability dOCker

53
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Optimized crater detection model

fps: 62.9985
ey R




Interoperability with
TensorFlow,

Enable cross-language collaboration by
PyTorch and ONNX interoperating with TensorFlow and PyTorch




4\ MathWorks:

Why bring MATLAB & Python together?

-~

~

P Take advantage of both languages and tools

P Bring different teams together for a common project

P Make your your flow better and whole workflow more
robust

56
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| need to use a network built and
trained in PyTorch

You can import and convert

PyTorch/TensorFlow DL models into
MATLAB with native functions

4\ MathWorks

\ o
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Why bring MATLAB & Python together for Deep Learning?
E Code

generation

Apps,  ——
Low code || |

Simulink,
Simscape

4\ MathWorks
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| 4\ MathWorks

Let’'s Explore What We Can Do With Imported Model

ONNX Model

! ! importONNXNetwork
MATLAB Neural Network Model

Pruning, Quantization Visualization,
Code Generation Verification

System Integration
(with Simulink)

Analyze Network
Retrain

LI
i =11

b -i ----- - T R _.-[?:' o i s
e

| sEoessssEmemneze| M
- IR T
NG l 1

Emtiacided
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Import and convert PyTorch & TensorFlow models

€ C

exportONNXNetwork

exportNetworkToTensorflow

i
AN

N
/

importTensorFlowNetwork

NNX

/W\ importONNXNetwork

i
AN

importNetworkFromPyTorch

* MathWorks:
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https://www.mathworks.com/help/deeplearning/ref/exportnetworktotensorflow.html
https://www.mathworks.com/help/deeplearning/ref/importtensorflownetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importnetworkfrompytorch.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html

Training and Evaluation

= trainYOLOv20bjectDetector —

train a YOLO v2 object detector
using training data
= Accelerated training using GPU

4\ Mathworks

>> [detector, info] =
trainYOLOv20bjectDetector (trainData, 1graph, options) ;

>> detector =
yolov20bjectDetector with properties:

ModelName: 'Car'
Network: [1x1 DAGNetwork]
ClassNames: {'Car'}

AnchorBoxes: [3x2 double]

>> [detector, info] = trainYOLOv20bjectDetector (trainData, lgraph,options)

Training on single GPU.

| mmmmmmmmmmmmmmmmmmmmmm s s e |
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning |
| | | (hh:mm:ss) | RMSE | Loss | Rate |
| mmmmmmmmmmmmmmm s e |
| 1 | 1 | 00:00:02 | 7.41 | 54.8 | 0.0010 |
| 4 | 50 | 00:01:14 | 0.90 | 0.8 | 0.0010 |
| 7 100 | 00:02:26 | 0.86 | 0.7 | 0.0010 |
| 10 | 150 | 00:03:36 | 0.81 | 0.7 | 0.0010 |
o e e e e e e e
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Training and Evaluation

= Set of functions to evaluate trained >> [ap,recall,precision] =

evaluateDetectionPrecision (results, stopSigns (:,2));
network performance

— evaluateDetectionMissRate
Average Precision = 0.7
— evaluateDetectionPrecision ! | | |
evaluateDetectionPrecision
— bboxPrecisionRecall . 1‘
— bboxOverlapRatio T
0.8 F
0.7r
06 ] }1 .
05T }_
0.4 !
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Interoperability: Import Yolov2Z ONNX network into MATLAB DEMO

AI Modellng myConvertedtodel = importTensorFlowhetwork(pathToTensorFlowFile, "OutputLayerType", "regression")

Importing the saved model...
Translating the model, this may take a few minutes...

. Finished translation. Assembling network...
Model des|gn and Import finished.
. myConvertedModel =

tuning

DAGNetweork with properties:

Layers: [9x1 nnet.cnn.layer.layer]
Connections: [8x2 table]
Inputhiames: {'input 2'}

H ardwa re QutputhMames: {'Regressionlayer_dense 7'}
o o .
0 0 accelerated tralnlng deepletworkDesigner(myConvertedModel )

| @ | deeplletworkDesigner(network) |

* Interoperability
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Why Al for MBD users?

-

o

Generate massive
realistic data with
physics-based
e

T

-

Generate
C/C++/HDL/CUDA code
automatically

=]

~

4 Verify and validate — A
certify — the requirements

J

=

s B

— N

Integrate to a unified
testing lifecycle

4\ MathWorks
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Deploy Al model on embedded device

\ 4

If corresponding library

»
»

)

-
& &

Converter for
PyTorch/TF models

N
&

—

Deep Learning blocks library

ot e

»

If no corresponding library

MATLAB Function Block

)u‘ yp

fen
MATLAB Function

4 MathWorks:
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Low code
No code Al

Interoperability with

TensorFlow, PyTorch
and ONNX

Verification and Validation
of Al models




4\ MathWorks

The biggest challenge to deploying Al algorithms on-board
IS verification and validation

Commercial Aviation
EUROCAE WG114 — SAE G34
EASA Concept Paper:

First usable guidance for Level 1 & 2
machine learning applications

70



Why verification is essential in your workflow?

Training |

¥

MNetwork
(weights and biases)

Algorithm |

h 4

Predicted
Label

Trained Network

Visualization
Method

Interpretable
Qutput

4\ MathWorks

g Verification
> Debugaging
M —Applications—»| Learning
»  Detecting Bias
-»  Model Selection

4l



Verification is present in many steps in the V&V cycle

(Sub)system
requirements verificatio

{Sub)system
requirements & design

/\

)

Requirements allocated to ML ML requirements
component management verification

Learning Assuran

4\ MathWorks:

Learning Assurance

verification

Learning process Inference model
management verification & integration
Model Model
training implementation

Data Independent data
management Ceammg pr[}cesg and learning verification

72



Vd|hY

\ > 4

Are my network robust
enough?

4\ MathWorks
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Neuron Coverage for Deep Learning robustness

https://qgithub.com/matlab-deep-learning/neuron-coverage-for-deep-learning

In'u:;e-mpm
-'I air I

b v
|:' | conv_1 =l conv. 2 | COnV_ 3 &
| i ol 2al § consalidiongl ll'al-'rlﬂﬂl!\'-ll‘-ﬂ

- ¥

1

m softmax
hiatzhse BatchBiormal EabcfiMormalize ki L En/Ed

L v w
ratu_1 | relu_2 | E refy 3 | |. clas:anulpn
el Ll | reluLayer | ralulaym [ | e La

¥
maxpoal 1 maxpoal 2
maEkPoaingdL mexPosing2adl

| LayerCoverage |
1 e | 0.2000|

2 |softmax 0.1000

¥
|E har.chnnrrn 1 hunchnu rr 2 | batchnorm_3

* MathWorks:
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https://github.com/matlab-deep-learning/neuron-coverage-for-deep-learning

4\ MathWorks

Neuron Coverage for our crater detector DEMO

Neuron Coverage for Varying Thresholds

0.9 T T
— e reluy
0.8 — el
relus;
. I —#— yolovZRelu1 ]
SyStem Des'Qn 0.1 —#— Aggregate Coverage
Integration with @ 067
complex systems T
Q05
3
.. - ) ()
o 04f ( - .M,
_Dﬁl System simulation : (1) o n; —min;n;
Z T l . i) #
e 0.3 max; n! )—mmj n'
— x System verification J J
—+V and validation 0.2
01F
0 : : e e ¥ *
0 02 04 0.6 0.8 1
Threshold
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Is Neural Coverage meaningful and stable? DEMO

1 - Create “equivalent” network
— same architecture and size

77



Is Neural Coverage meaningful and stable?

Predicted output

Do
()

e
-

22+

1.8

2 — Verify predictions

Network Predictions

T T L]
C  Original network
o < Modified network
® o ® ® ® =
4] W)
R & - B® ® % & .
.‘_\:‘ 2] 4."‘- al o -C &, )
| I‘-"'I-';q - L>" % 7] ¢ ": % =
0 ® ® ® &
& G .
?“‘L\ X
® &
4 4 g@/ s'mé 5 8
{ PR
._1| : ._!F P “ .)\_, :’. r
'3:‘?':" &0 x@{% @ ) .— (7] 2 ®® )
{ ictiong
R 2 Fe¥e e
® -}_c:n:,-_c:- ;%.‘
e w0 & B
@ 8 g e e
' - ® € Be =@
® ® " R - @ ®
® 2 & % o ® & ® ) ® T @g %M &
& ) R_.qu i @ 2
®

50 100 150
Training data index

200

,ﬂ MathWorks:

DEMO
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Is Neural Coverage meaningful and stable” Yes and no DEMO

3 — Compare coverage

Activations of First Fully Connected Layer

P #
= =\ ‘\_ o . —
'{_‘-._\‘ A4 ,-fr'-_i::_- = r —_——
=l \ ff "
: Yy 9
ar -6 74/’ - 33%
\coverea/ | covered
LayerCoverage 5 ﬁ LayerCoverage
1 |fe_1 |0.6667 ramng dataince NN 03333
2 fc 2 O ;OFigiﬂar} —— - 2 fc_z U
= loriginal) — — —ac
activauon 3 (original activation 3 (modiﬁed)]
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& Lift a stone and find nothing ic to move forward »

Source: Ideogram.ai
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Deep Learning Toolbox Verification Library

Verify deep learning network robustness against adversarial examples
and to compute the output bounds for a set of input bounds.

Neural Crater mmm
Network No crater mm

Formal Verification

verified unproven violated

https://www.mathworks.com/help/deeplearning/deep-learning-verification.htmi
https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library

82



https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/help/deeplearning/deep-learning-verification.html

4 MathWorks

DEMO

Deep Learning Toolbox Verification Library %G?

System Design

Integration with
complex systems

'DE] System simulation

— x System verification
—+V and validation

83



* MathWorks:

o

Deep Learning Toolbox Verification Library

Precision
Precision with noise
0.9F -
Perturbation =
erturbation = 20

0.8F -

0.7F

0.6 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Deep Learning Toolbox Verification Library

1
Precision
Precision with noise
09F é °
Perturbation = 30
0.8F
0.7r
0.6 : .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Deep Learning Toolbox Verification Library

&

l‘ Precision
0.9} ﬂ/l]{%g/ Precision with noise | |
o} Perturbation = 50
0.7} -
o6 N
0.5 : i L i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Deep Learning Toolbox Verification Library

Perturbation = 100

Precision
Precision with noise
0.9t
0.8t
0.7t
0.6t
0.5t
\,
0.4 . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Average precision vs noise perturbation

GEL
& e - —
< i
2 ' r"\lr |
& ll:‘ \ F',k
8 075 1l1| f.lf \ ,-"' 1
i ¥ 1L1. d ,
p o o4 \
W \
g’ &
\
Q\) o7} VR
Y "1 Jr.r %
N g \
Yy
l
0.65 ; .
0 20 40 60 80 100
Perturbation
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#Craters vs noise perturbation

480
L & Sl .‘.__!
S A 470 Ay
¥

02 k! "‘\ ,’t'- J \

Y v 'R 4601 A S \
o d VR / v \

8 0.75F Vo ' 808 o 0—0-0" \ |

& § / \ f" \ .du h "l'.'.lr “_ <

QU (‘:9 ¢ \ed '

& lllt 430 F

N i‘ 420

Q\) 07} LR

N n_l NS 410

!
390
s
0 65 ; : - . 380 \ . .
8 20 a0 60 &0 100 0 2 a0 60
Perturbation Perturbation
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* MathWorks:

Agenda
14.00u Introduction All
Efficient Modelling of a Lunar Crater Detection Deep Neural Network
14.154 = Get first results faster with low code / no code approach MathWorks
= Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
= \Verification and Validation of Al models
16.00u Break All

18.00u

Efficient Deployment of a Lunar Crater Detection Deep Neural
Network on FPGAs

= Deploy Deep Learning models onto FPGA/SoC platforms
=  Optimize model performance through on-target profiling and quantization workflows
"  Pre-processing sensor data for Deep Learning applications

Next steps

MathWorks

All

97






Deploying Deep
Neural Networks on
FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications




Jeplieyling [DEE Deep Learning on FPGA from
Neural Networks on

FPGA / SoC MATLAB in 5 steps




4\ MathWorks

Lunar Crater Detection




4\ Mathworks

FPGA is a good choice for lower power deep learning applications

Speed High High
FOEL : High Low Low Lowest
Consumption
Engineering o dium Low Medium High
Cost

Qualified for space, radiation hardened
Low Latency

High speed I/O connectivity

Handling data input from multiple sensors (cameras, LIDAR, ... sensors)

Adding extra capabilities beyond Al without requiring an extra chip
102



4\ MathWorks

Challenges of Deploying Deep Learning to FPGA Hardware:

11x11

stride=4

224

224

96
filters

11x11

96 filters of 11x11x3 of 32-bit parameters =140k bytes

Each stride is an 11x11x3 matrix multiply-accumulate

-21.16M bytes of activations
55

95

-2 105M floating-point multiply operations!

103



4\ MathWorks:

Challenges of Deploying Deep Learning to FPGA Hardware

> FIowerJ

N 2 —» Cup
q —>» Car
—> Tree
. conv|conv|conv|convj|conv
input 1 2 3 4 5 fc6 | fc7 | fc8
Parameters | /2 | 140k| 1.2M|3.5M | 5.2M | 1.8M |148M| 64M | 16M EPELRTMm) NOUESTNINY
(Bytos) . . . .
Activations | oaq | 4 1\ | 728K | 252K | 252K | 168K | 16K | 16K | 4Kk ERRL » Block RAM
(Bytes)
FLOPs n/a |105M|223M|149M|112M| 74M | 37M | 16M | aM BEZIRY » DSP Slices

104



| 4\ MathWorks:

Deploying Deep Learning to FPGA Hardware Requires Collaboration

—> Flower¢
Acquire

. | | N ~ —» Cup Output /
data R : | S D —» Car display

—> Tree

Parameters

(Bytes) Optimize:

Activations * Network / layers
(Bytes) » Fixed-point quantization

* Processor micro-architecture
FLOPs

105



* MathWorks:

The Ultimate Challenge

You can either find somebody:

who has horn (FPGA),

or looks like a horse (Deep Learning),

or is purple (Application)

but notall 3 ....

FPGA (after all purple unicorns do not exist)
Deep Learning

Application

106



a_ﬂ MathWorks:

System Requirements Drive Al Design and
the need for Collaboration m

&)

Camera specs

Accuracy

Latency

Systems Cost

Engineer Power
(purple) s
7 T

Deep Learning Hardware
Practitioner Engineer
(horse) (horn

)

107



4\ MathWorks

Al-Driven System Design and Collaboration

Application knowledge

Data Preparation Al Modeling System Design Deployment

||||||‘|| Data cleansing and Model design and Integration with M Embedded devices
preparation tuning complex systems

@ Human insight EiE Ia_lcac:(ejl\g?arteed training 'DE] System simulation L_ﬂ.% Enterprise systems

— x System verification ¢ Edge, cloud,

Simulation- * .
generated data Interoperability —+V and validation L1’ desktop

Deep Learning knowledge




4\ MathWorks

Al-Driven System Design and Collaboration

Deployment

(O) Edge, cloud,
desktop

109



Customizable Deep Learning Processor

Spend FPGA resource for only
the layer kernels used in your

network

90
80
70
60
50
40
30
20
10

0

||| |II e
m - AXI4

FullDUT Conv Only FC Only LSTM
Processor no LRN Processor

mLUT mBRAM mDSP

Percentage resource
usage on ZCU102 board

Slave

DDR Memory

Vendor Memory Interface IP

4\ MathWorks

I AXl4 Masters I

Activation Weight
Data Read/Write Data Read
Arbitrator Arbitrator

!

Debugger/
Instruction
Data Read/Write
Arbitrator

Memory Access Arbitrator Modules

Top-level
Scheduler
Module

Processing Modules
Conv FC Custom
Kernel Kernel Kernel

FPGA Deep Learning Processor IP

110



Deep Learning HDL Processor steps

/

4\

Application
logic

Analyze
Profile

Compile &
Deploy Network

Layer
control
instructions

Weights &
Activations

J

HDL Coder

|

ﬂ MathWorks:

Deep Learning Processor

Activation
Data ReadWrite
Arbitrator

/|

Data Read
Arbitrator

Debugger/
Instruction
Data Read/Write
Arbitrator

Memory Access Arbitrator Hadl:lles

3

-

Top-level
Scheduler
Module

!

Processing Modules

Conv
Kernel

J(

-

FPGA Deep Learning Processor IP

N\

N\

IP core interface

DL Processor
HDL

|

-/

\

111



Crater Detection Example

Application
logic

Pre-processing:
Extract regions and
resize

b

Inference: Predict
using trained network

Post-processing:
Annotate and label

* MathWorks:

DEMO

4

4

112



4\ MathWorks

Py

oy

Run Deep Learning on FPGA from MATLAB in 5 steps

>> wobj=dlhdl.Workflow('Network', detector.Network, 'Bitstream’, 'zcu102_single’);
>> dn = wobj.compile;

>> wobj.Target = dlhdl.Target('Xilinx', 'Interface’, 'Ethernet’, 'IPAddress’, '192.168.4.2");
>> wobj.deploy;

>> [predict_out, speed] = wobj.predict(img_pre,'Profile’,'on");

13



-

logic

Application

>> deepNetworkDesigner

>> dn = wobj.compile;

>>wobj.deploy;

>> [predict_out, speed] = wobj.predict{img_pre, 'Profile’,'on’);

>> wobj.Target = dlhdl.Target('Xilinx', 'Interface’, 'Ethernet’, 'IPAddress’,'192.168.4.2");

* MathWorks:

%

Deep Learning Processor Profiler Performance Results

Metwork

conv_1
maxpooll
conv_z2
maxpoolz
conv_3
maxpools
conv_4
volov2Conyl
yolov2Cony2
yolov2ClassCony

LastFrameLatency(cycles) LastFrameLatency(seconds)

1731248
284321
161247
212784

73571
178561
44228
le2@2e
185938
1g7ass
74251

2.88787
2.800832
2.008732
2.00897
2.800826
2.80831
2.006828
2.800874
2.0814a8
2.88148
2.00024

* The clock freguency of the DL processor is: 228MH:z

FramesNum

1

1731567

Total Latency

Frames/s

Layer
control
instructions

Weights &
Activations

\/-
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Deploying Deep
Neural Networks on
FPGA / SoC

Optimize model
performance on FPGA

Pre-processing sensor data for
Deep Learning applications

(R N )

[ ()



Two Compression Techniques

before pruning after pruning

pruning
synapses

-—>

pruning
neurons

Pruning
deep neural networks

4\ Mathworks

» Poaer of 1 Birs

Quantization of
deep neural networks

117



| 4\ MathWorks:

”
Taylor Approximation Pruning ‘

i ) ) /Pruning process\ prunableNetwork = taylorPrunableNetwork(dlnet)
Trained
Evaluate importance ==
Network [ of weights ]< prunableNetwork =

TaylorNetworkPruner with properties ...

¥

Remove the least
important weights

. 4

Fine Tuning
4 J \ (training)

. Classification Chject Detection Semantic Segmentation
Remove unimportant Retrain * oot St e Bagmaniu
parts of the network 100
Pruned + = B |
Retrained .
"
0

Classification Chject Detection  Semantic Segmentation

| I Original Network [ Pruned Network

! ) 118




,ﬂ MathWorks:

Projected Layer Pruning ‘

0.0061

Accuracy »10°Model Size Performance
0.014 T T 5 T T 3 . T
High-dimensional space of input and voral
. T 25¢
output neurons holds redundancies
0.01¢ % B
,, 0.008¢ %
: = !
x -
£
B

—
T

0.004¢

Desktop Codegen Inference Time (s)

0.002} 0.51

Technical article on projected layer pruning e



https://www.mathworks.com/company/newsletters/articles/compressing-neural-networks-using-network-projection.html?s_tid=srchtitle

4\ MathWorks

DEMO

Collaborate to Quantize Network

Latency
Accuracy nin Cost
Power
Systems
Engineer Qﬁ@
®e o
/ 18
Deep Learning / Hardware/Software
Practitioner Engineers

+/-
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Deep Network Quantizer - Int8 Quantization

I DEEP NETWORK QUANTIZER

Ifl:ll:I Calibration Data:

Validation Data:

Mew [imds - Imagelatastore

-

ﬁ Quantize a network
Start quantization of a network
Import antizer object

== Contin Lation of a network

Import

Network

& maxpooli
T

® conv_2

T
#
T
® relu_2

T

® maxpool2

T

® conv_3

T

& BN2

T

» relu_2

T

@ maxpoold

T

& conv_4

T

& BEnd

T

® relu_4

T

@ yolow2Convi

Export quantized

network

- ] Calibrate: [validati:unDataStore—C:umbin... Hardware Settings Quanhzatlon Options Cluantlze and Validate Export
VALIDATE EXPORT
£/ About Quantization Calibration Statistics
Layer Mame Min Value |Max Value
- input Quantize and Validate
Activations 0.0000 1.0000
Calibrate =
Weights -1.7574 1.7767
Bias -2.5100 2.5245
Activations -8.3809 6.8080
* relu_1
Activations 0.0000 6.8080
¥ maxpooll
Activations 0.0000 6.8080
¥ conv_2
Weights -0.2267 0.2915
Bias -1.5815 1.7443
Activations -6.6541 87700
> relu 2

Dynamic Range of Calibrated Layers

,ﬂ MathWorks:

Mo,

r*ﬁg

B @ |

16

Heat Map Color

Clamped-out values

In-range values

M\ 524

Validation Summary

4 Validation Results

Number of samples: 21

Metric

Floating-Point Network Results

Quantized Metwork Results

Percent Change

Average precision

0.7627

0.7767

1.8380
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* MathWorks:

Quantize Deep Learning Network and Processor in MATLAB
&
-

>>wobj=dlhdl Workflow('Network', detector.Network, 'Bitstream’, 'zcul02 int&');
>> dn = wobj.compile;

>> wobj Target = dlhd| Target("Xilinx', 'Interface’, 'Ethernet’, 'IPAddress’, '192.168.4.2');
>>wobj.deploy;

Application

logic >> [predict_out, speed] = wobj.predict(img_pre, Profile’,'on’); 1
ayer .
1 I — y Weights &
e N SRS S e control Ny
e -8 — = SN instructions Activations
w W = .

| |

>> deepNetworkQuantizer

LA
T B

NN

i 'il‘
{

/

Deep Learning Processor Profiler Performance Results

LastFrameLatency(cycles) LastFrameLatency(seconds) Frameshum Total Latency Frames/s

Network 5781559 2.80238 1 576745 433.5%
conv_1 188211 2. 80048
maxpooll 55381 2.80028
conv_2 BBG575 2.80a27
maxpool2 31235 2.80a12
conv_3 53773 2.80022
maxpools 18213 2. a00a7
conv_4 45545 2.80a1%
yolov2Convl 85179 2.80034
yolov2Conv2 B52le 2.80834
yolov2ClassConv 23876 2,8801a

* The clock freguency of the DL processor is: 258MHz
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Converge on an FPGA-Optimized Deep Learning Network

-

Application
logic

P 1oe
o0

. hi.deploy;

% Create target object
hTarget = dlhdl.Target(..)

% Create workflow object, using the target

hW = dlhdl.Workflow(..);

% Compile the network
hW.compile;

% Run prediction

NG

Bitstream Name

Zcul102_single
Zcul102_intg

16
64

% Program the bitstream and deploy the compiled network and weights

>> deepNetworkQuantizer|[score, speed] = hW.predict(img, ‘Profile’, ‘on’);

Parameters Speed
48 MB 127.1 fps
44 MB 433.5 fps
ConvThreadNumber FCThreadNumber  Lookup Table(LUT) Block RAM (BRAM) DSP Utilization
Utilization(%) Utilization(%) (%)
4 a0 63.7 15
16 62 49 3

Layer
control
instructions

\/-

Weights &
Activations

\/-

u
3 -f'-r k=

| int8 Bitstream \

AEE ¢ o

——

I—

* MathWorks:
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IPCORE CLK AXl4 Master Activation Data | ===
g |IPCORE_RESETN AXIA Master Weight Data 1 B

AXld ACLK AXld Master Debug 1 ===
8 AXl4 ARESETN

Pre-processing.sensor Flatg for Customizing and Integrating
Decp Ledrningiapplicafions Deep Learning Processor IP




4\ MathWorks

Customizable DL Processor to save FPGA Area .

=  Spend FPGA resource for only DDR Memory
the layer kernels used in your I .
network Vendor Memory Interface IP
I AXlI4 Masters I I
o Hlorgnt it
90 Data Read/Write Data Read .
80 Arbitrator Arbitrator Data R(_eadNVrlte G
Arbitrator
;8 Memory Access Arbitrator Modules
0 } } }
40 !
30 Processing Modules
o I Top-level Conv FC Custom
10 I I +——— " Scheduler >
0 Ve [ - AXI4 Module Kernel Kernel Kernel
Full DUT ConvOnly FCOnly  LSTM Slave
Processor no LRN Processor
“LUT ®BRAM =DSP FPGA DL Processor IP

Percentage resource
usage on ZCU102 board 126
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Generate Custom Deep Learning Processor HDL and IP Core .

/

% Create a custom processor object \
hPC = dlhdl.ProcessorConfig;

% Customize processor characteristics
Application hPC.TargetFrequency = 300;
loaic hPC.ProcessorDataType = 'int8"';
g hPC.setModuleProperty('conv', 'ConvThreadNumber', 64); Custom Processor
1 1 hPC.setModuleProperty('fc', 'FCThreadNumber', 16);

IP core interface
DL Processor
HDL Coder HDL

% Estimate performance
snet = getLogoNetwork;
hPC.estimatePerformance(snet)

% Generate HDL and IP core using HDL Coder
K dlhdl.buildProcessor(hPC);

» Configure processor settings
« Parallel threads, frequency, memory sizes,
enable/disable modules (conv/fc/...)

* Quantized or single precision floating point
« Target frequency
« Target any hardware
« Synthesizable RTL with AXI mappings
* Automatic Xilinx or Intel implementation
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Deep Learning Processor (DLP) Configuration

###

(Ki::i;Lhd]+bulldPrﬂHE$5Ur[hPGJ

zenerate Deep Learning Processor using processor configuration:

Processing Module “conv®
ModuleGensration:
LENBockGeneratlon:
SeqmentationBlockGeneration:
ConvThreadiNumber :
InputMemorysize:
CutputMemorysSize:
FeatureSizelimit:

Processing Module “fe*
Modulecensration:
SoftmaxBlockGensration:
SigmoidBlockGenaration:
FCThreadyumbear:
InputMemorySize:
outputMemorysize:

Processing Module "custom™
ModuleGeneration:

Addition:

Multiplication:
InputMemorysize:
OutputMemorysize:

Processor Top Level Properties
RunTimeControl:

RunTimsStatus:
InputStreamControl:
outputstreamControl:
ProcessorDataTypea:

System Level Properties
TargetPlatform:
TargetFrequency:
SynthesisTools
Referencebesign:
synthesisToolChipFamily:
SynthesisToolDeviceNames
eunthe=sisToolPacrkageame

~

‘on!
Toff!
1|:|]-\..I

1&

[227 227
[227 227
2048

L
[Rpy—

1!:']1'

taff!

Vo FEY % Configure DL Processor

4 hPC = dlhdl.ProcessorConfig;
25088

4028 ¥ DL Processor HDL code generation

dlhdl .buildProcessor (hPC)
‘on!
‘on'
11:':“..
40
40

'register’
'register®
"register'
'register!
*%single!*

"Xilinx Zyng UltraScale+ MPSoC ECU102 Evaluation Kit'
200

"Milinx Vivado'

'"AXI-5tream DDE Memory Access : J-AXTIM'

'Zyng UltraScale+!

"RezuSeg-Lfiviblloe-2-e'

LN

Under the hood:

Simulink model l

HDL Coder

IP core generation
Workflow

HDL IP core and 1
bitstream | |

[ l

: Ak Master
AXlA

|conv | [ FC |

Scheduler

DL Processor IP
MATLAB controlled DL Processor on FPGA/SoC

I themet | A

' E
MATLAB | G

,ﬂ MathWorks:

"
==
ﬂ?{x
k™ 4
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4\ MathWorks:

Estimate Resource Utilization and Performance
for Custom Processor Configuration

DEMO

Reference zcu102_int8 bitstream configuration: a .
Possible performance of 13982 frames per second (FPS) to a Xilinx ZCU102 ZU9EG device
Digital signal processor (DSP) slice count — 2520 (available) / 805 (used)

Block random access memory (BRAM) count — 912 (available) / 388 (used)

Requirements:
Target performance of 500 frames per second (FPS) to a Xilinx ZCU102 ZU4CG device
Digital signal processor (DSP) slice count — 240 (available)
Block random access memory (BRAM) count — 128 (available)
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Estimate Resource Utilization and Performance for Custom DLP

dlhdl.ProcessorCo
.ProcessorDataType =
.setModuleProperty(’
.setModuleProperty(’

customhPC =
customhPC
customhPC
customhPC
customhPC

nfig;
‘int8";
conv ', "ConvThreadNumber',4); % ConvThreadNumber: 16
conv', 'InputMemorySize',[3@ 38 1]); % InputMemorySize: [227 227 3]

.setModuleProperty( ' conv’, "OutputMemorySize',[3@ 3@ 1]); % OutputMemorySize: [227 227 3]

ﬂ MathWorks:

o
St

estimatePerformance

Deep Learning Processor Estimator Performance Results

LastFrameLatency(cycles)  LastFrameLatency(seconds) Framesyum Total Latency
Network 203453 2.88199 1 392458
conv_1 2E1E8 2.8a8132
maxpool_1 31888 2.88a1s
conv_2 44736 2.88822
maxpool_2 22327 2.88811
conv_3 255845 2.88133
fc 5292 2. 8aaa4

* The clock frequency of the DL processor is: 288MH:z

Frames/s

estimateResources

Ceep Learning Processor Estimator Resource Results

DSPs Block RAM® LUTS{CLB/ALUT)
available 2528 912 274038
DL_Processor 133( &%) 188( 12%) cE27e{ 21%)

* Block RaM represents Block Ras tiles in Xilink devices and Block RAM bits in Intel dewices

=y
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,ﬂ MathWorks:

d

ek

optimizeConfigurationForNetwork

St

%  Generate Optimized Processor Configuration for MobileNetv2 Network

1. Create a dlhdl.ProcessorConfig object

net mobilenetw2;

hPC

dlhdl.ProcessorConfig;

2. To retrieve an optimized processor configuration, call the optimizeConfigurationForiNetwork method.

hPC.optimizeConfigurationForNetwork(net)

### Optimizing processor configuration for deep learning network begin.

### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer® into "nnet.cnn.layer.Conveolution2DLayer'

### Note: Processing medule "conw™ property "InputMemorySize” changed from "[227 227 31" to "[224 224 3]".

### Note: Processing module "conv™ property "OutputMemorySize” changed from "[227 227 3]" to "[112 112 32]".

#it# Note: Processing medule "conv” property "FeatureSizelLimit™ changed from "2@48" to "128@8".

### Note: Processing meodule "conv™ property "LRNBlockGeneratiocn" changed from "on”™ to "off" because there is no LRN layer in the deep learning network.
#it# Note: Processing module "fc" property "InputMemorySize" changed from “25888" to "1288".

#it# Note: Processing medule "fc" property "OutputMemorySize™ changed from "4826™ to "leee”.

Processing Module "conw"
ModuleGeneration: ‘on’
LRNBlockGeneration: 'off"

ConvThreadNumber: 16
InputMemorySize: [224 224 3]
OutputMemorySize: [112 112 32]

FeatureSizelimit: 1280

Processing Module "fc"
ModuleGeneration: ‘on
SoftmaxBlockGeneration: 'off"
FCThreadiumber: 4
InputMemorySize: 1288

O utMemao
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https://www.mathworks.com/help/releases/R2022b/deep-learning-hdl/ref/dlhdl.processorconfig.optimizeconfigurationfornetwork.html

Integrate the DL Processor into your bigger system

- Generate Generic DL Processor IP core
= Define clean input/output frame hand-shaking protocol
= Drop the generated DL IP core into your bigger system

Processor Config

Top Modnle Properties

DeeplearningIPInputInterface:

'DDE Interface'

DUT ip_

0

EernelDataType: 'single' p
System Level Froperties _ + Axi4
TargetPlatform: 'Generic Deep Learning Processor' Generate —= IPCORE_CLK
TargetFreguency: 200 =g IFCORE RESETM
g;EEEEETEfDDl: 'Xi1linx Viwvado! — - A ACLK
ReferenceDesign: '!

SynthesisToolChipFamily:
SynthesisToolDeviceName:

'Zyng UltraScale+!
'¥xczuSeg-ffivbllSe-2-e!

»> dlhdl.buildProcessor (hPC) _1 AXld ARESETM

AXI4_Master Activation_Data - i
Master Weight Data -+ }i:
AXI4 Master Debug + |

AXl4

SynthesisToolPackageName: '°

SynthesisToolSpeedValue: '!

DUT ip

4\ MathWorks:

il
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Al-Driven System Design and Collaboration

dhe

System Design

Integration with
complex systems

'{>|:I_.| System simulation

— x System verification
¥ and validation

Deployment

. Embedded devices

% Enterprise systems

¢ Edge, cloud,
desktop

4\ MathWorks:
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-

Integrate and Validate YOLO v2 on SoC platforms

Design and Deploy Pre-Processing

B

Normalization YoloV2 Post-

& Resize DL Network Processing
Frames (Vision IP) (DL IP) (PS)

4\

MATLAB

Block Parameters: imresize{downsample)

imresize(downsample) (mask)

Downsample streaming video.

Specify the scale factor OR the target output size, for both horizontal and vertical directions. The
Rasiza | scale factor must be in the range 1.000 to 127.999.

Parameters

> |

(I)uuﬂﬂ [1a3] > piKE“n | | Interpolation algerithm |Bicubic
[1x3] uint8 [1x3] ufixB_End [1x3] uffix1 2_?1.12 [1
Yy = ! : i

- . i : Bilinear
pirelin pixelOut i | S Color format: RGB _
to_frac / Image Size Lanczos 2

k 4

pixalcontral

@ » ctrlin ImageResize Input frame width inputFrameWidth 3. : Inputframe height inputFrameHeight
ctriln
Width scale factor 2.6562 Height scale factor 1.75
pixelcontrol | pualcur:trnl i i : i . :
dr_‘uhle Enabl ctriOut c ¥ ciriin ctriCut : Output frame width networkInputSize(2) i Output frame height networkInputSize(1)
3 * Enable
enabla

low_pass_filter

Cancel Help Apply
A

Imresize{downsample) -

134



4\ MathWorks

Integrate and Validate YOLO v2 on SoC platforms

Challenge: how to verify communication with memory access and handshake?

= Easier modeling of the pre/post processing together with DL Processor

DDR Memory

AXI4 Master

[ conv | [ FC |

Memory access & Scheduler Memory access|&
Hand shaking Hand shaking

\ DL Processor IP /
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Integrate and Validate YOLO v2 on SoC platforms

Solution: Deep Learning HDL Processing System Simulink block

= Easier modeling of the pre/post processing together with DL Processor

——ly

Memory access &
Hand shaking

Do Liaimien 00 Predassng Systam

The Deep Lammeng HIL Processing Syshem block semuizees the doap leamng processon IF oore and provdes @ way (o modes, smmuiate, and
vabdatn the rard-shaking logic batwean the pre @nd post-processing symioms and the deep lnaming processorn [P oore.

m Memory access &
Hand shaking

Petveark  Wethawk From BT file i

Flia Folly Petmal Rrwene

Activalion Lper  polovZClasslone
Maximum it frames momibes lim for memony socess alocation L

Processor Cosfiguaton Properbes
Jmnmmmm&mwmm
Coralation Makds  FC Hoduo Omion Modss  Processor Top Linal
- ey

B Sepmaimane s Cansat

Ireax Marmory Ses

[(ox | cosd | wep Lty
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’i YOLOw2PreprocessTestbench - Simulink prerelease use

SIMULATION DEBUG FORMAT

= Open ~ ] = ||| Stop Time | 100000 e
T = T mwlom ] @ @ P o @ &
New B e ~ Libiary : Ad Signal = || Acceterstor = ] Step Run Step StiiE Data Lagic Bird's-Eye  Simulation M
- E Print = Browser || 2 e Table | B Fast Restart Back = - Forward . Inspectar Analyzer Scope Manager
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS z
T
Q‘.‘.] YOLOw2PreprocessTestbench B -
g ® |[’a|YOLOvZPreprocessTestbench b v g
3 B YOLO v2 DUT - Pre- and postprocess with deep learning hand shake
5 =
E pixel B [‘;3]3'—; piel
- D2 [224x340x3] D2 [224x340x3] % o : ]
I i i > pachad utData
inputlmages i | TPUImes e frame  Frama To Plxels Data ]np -
AXIWriteCtriOutDL
il Input Images
Saelect Image Pack i o Vﬂﬁd
valid
- e 101 [ AXIWriteDataDL
KN Figure 1 DUTProcstart ' -
File Edit View Inset Tools Desktop Window Help u SITPmettan
Nede 208 & E ———»|AXIReadData
A\ o - . -
i ] Yolo V2 Pre- and Postprocessing DUT Deep Learning HDL Processing System
(&5
[-H
» ||

Ready View dia"[ostics 105% FixedStepDiscrete



4\ Mathworks

Integrate and Validate YOLO v2 on SoC platforms i

Prove correct communication with memory access and handshake

Normalization YoloV2 Post-
& Resize DL Network Processing
Frames (Vision IP) (DL IP) (PS)
MATLAB
0 Gouel Kl Figure1
File Edit View Insert Tools Desktop Window Help . R Reighasnp SN SRS SV SRl >
NEde|a/0B | L E LEdM SRE =5

Model Output

Reference Output

Error = 6%, Accuracy = 94%
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Utility to export DL Deployment AXI read/write into a file
(for ARM deployment)

Deploy Simple Adder Network
by using MATLAB Deployment

Target Deployment File

§

Processing

Scheduler

Script and Deployment
Instructions File example

Custom DL

Post-

Processing
IP core

Processor IP

HDL Coder Reference design

4\ MathWorks

Bl

Enables you to initialize the DL Processor IP from your own host target (instead of using MATLAB)

4

Deep Learning

MATLAB Networks
dihdl.Workflow()
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https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html

4\ MathWorks

Network Examples

Network Examples Application Area

VGG16/VGG19 Classification

ResNet18/ResNet50 Classification/Detection CNN

YOLO v2 Object detection CNN 2021
MobileNet v2 Classification/Detection CNN

1-Dimentional CNN networks Classification/Detection CNN

Segmentation networks Segmentation CNN 2022
LSTM networks Signal processing RNN ) |
YOLO v3 Object detection CNN,MIMO 20227
GRU network Signal processing RNN 2023
YAMNet (Audio toolbox) Classification/Detection CNN

Projected LSTM Signal processing RNN 2023
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Collaborate to Converge on Deep Learning FPGA Implementation

s 'l N
Application
logic

Vol

&

Al Modeling

System Design

o2 k™

Deep Learning HDL Toolbox

Prototype from MATLAB

J :
Tune for system requirements

Deployment

Configure and generate RTL
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4 MathWorks:

Agenda
14.00u Introduction All

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
14.154 = Get first results faster with low cc?de / nf) code appr_oach. MathWorks
= Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
= \Verification and Validation of Al models

16.00u Break All

Efficient Deployment of a Lunar Crater Detection Deep Neural

Network on FPGAs

16.30u = Deploy Deep Learning models onto FPGA/SoC platforms
= Optimize model performance through on-target profiling and quantization workflows
" Pre-processing sensor data for Deep Learning applications

18.00u Next steps All

MathWorks
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Why MATLAB & MathWorks for Al?

/ Domain-specialized workflows \
for engineering and science

g B @

% £ 5

-

~

Platform productivity

Q)

f Multi-platform deployment of\
full applications and systems

o J

flnteroperability with Python and\
DL Python-based frameworks

" SIMULINK®

P * TensorFlow
O PyTorch
\_ € ONNX )

\_

4 People A
i

\_ /

4 MathWorks:
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Examples

Deep Learning HDL Toolbox
Get Started with Deep Learning

HDL Toolbox

Prototype Deep Learning
Networks on FPGA

Deep Learning Processor
Customization and IP

5 tworks on FPGA

Generation

System Integration of Deep 3
Learning Processor IP Core

Deep Learning INT8 5

Quantization

)
Visualize Activations of a

Deep Learning Network by
Using LogoNet

Feed an image to a convolutional
neural network and display the
activations of the different layers of
the network. Examine the activations

Open Live Script

Deploy Transfer Learning
Network for Lane Detection

Create, compile, and deploy a

dihdl. Workflow object that has a
convolutional neural network. The
network can detect and output lane

Open Live Script

Running Convolution-Only
Networks by Using FPGA
Deployment

Typical series classification
networks include a sequence of
convolution layers foliowed by one
or maore fully connected layers

Open Live Script

Image Category
Classification by Using Deep
Learning

Create, compile, and deploy a

dihdl Workflow object with alexnet
as the network object by using the
Deep Leaming HDL Toolbox™

Qpen Live Script

)
Vehicle Detection Using
YOLO v2 Deployed to FPGA

Deep learning is a powerful machine
learning technigue that you can use
io train rebust object detectors.
Several technigues for object

Open Live Script

3
Image Classification Using
DAG Network Deployed to
FPGA

Train, compile, and deploy a
dihdl. Workflow object that has

ResMet-18 as the network object by
using the Deep Learning HOL

Open Live Script

4
Vehicle Detection Using DAG
Network Based YOLO v2
Deployed to FPGA

Train and deplioy a you look only
once (YOLO) v2 object detector.

Open Live Script

¥

Defect Detection

Deploy a custom trained series
network to detect defects in objects
such as hexagon nuts. The custom
networks were trained by using

Open Live Script

L)

Frepumney ¥

Classify ECG Signals Using
DAG Network Deployed To
FPGA

Classify human electrocardicgram
(ECG]} signals by deploying a trained
directed acyclic graph (DAG)
netwaork.

Open Live Script

‘Groerd Truse: slzshie Pragetisn FRGA: bedte

Bicyclist and Pedestrian
Classification by Using FPGA

€

Deploy a custom frained series
network to detect pedestrians and
bicyclists based on their micro-
Deoppler signatures. This network is

COpen Live Script «f

Prototype and Verify Deep
Learning Networks Without
Target Hardware

Rapidly prototype your custom deep
learning network and bitstream by
visualizing intermediate laver
activation results and verifying

Cpen Live Script :

d MathWorks:
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4\ MathWorks

Training Resources
Deep Learning Onramp

0% Share | Certificate | Settings

Machine Learning Onramp ?(66

& modules | 2 hours | Languages

Learn the basics of practical machine learning metheds for classification problems. Course Description

Get started quickly using deep learning methods to perform image recognition.

Machine Learning with MATLAB

= e e n 4
7 modules. | 12hours | Languages Course Author

Explore data and build predictive models. Renee Bach

Format  Self-paced online
Duration 2 hours
Language English (set language)

Deep Learning Onramp ?(Ge

Smodules | 2 hours | Languages

Get started quickly using deep learning methods to perform image recognition.

Deep Learning with MATLAB

13 modules | &hours | Languages

Modules

Learn the theory and practice of building deep neural networks with real-life image and > Introduction 5rin

sequence data.

> Using Pretrained Networks 20 min

Reinforcement Learning Onramp QQGG > Managing Collections of Image Data 30 min
Smodules | 3 hours | Languages

Master the basics of creating intelligent controllers that learn from experience. > Performing Transfer Learning &0 min

> Conclusion 10 min

https://matlabacademy.mathworks.com/
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https://matlabacademy.mathworks.com/

4\ MathWorks

MathWorks training options for Al topics

MATLAB Skills

Assessment
. MATLAB for Data . . . _— .
Foundatmnal/ MATLAB Fundamentals Processing and Procem;{gA?ngAgata with Api‘ﬁt:;?fﬂ;”:sr;irfAB
Core MATLAB (3 days) Mo (1 cay) (1 day)
. Image Processing with Computer Vision with
Image & Video Processing MATLAB MATLAB
(2 days) (1 day)

Signal Processing and

Feature Extraction for Machine Learning with Deep Learning with
Machine and Deep Learning Data Analytics with MATLAB MATLAB
MATLAB (2 days) (2 days)
(1 day)

Embedded Coder for

. . Polyspace for C/C++
. Generating HDL Code DSP for FPGAs Production Code . 3
Implementatlon from Simulink (2 days) (3 days) Generation Cc-de(;fz;lﬁc;:tmn
(2 days) L&
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4\ Mathworks

Resources for Further Learning

= Crater Detection - Deep Learning
— Deep Learning Solutions in MATLAB
— Deep Learning Verification Library
— Deep Learning Models
— MATLAB with TensorFlow and PyTorch
— Importing Models from TensorFlow, PyTorch, and ONNX
— TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers
— What's New in Interoperability with TensorFlow and PyTorch

« Crater Detection - Deep Learning = FPGA

— Deep Learning HDL Toolbox
— Deep Learning HDL Toolbox Supported Networks, Layers, Boards and Tools
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https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/online/2022/matalb-with-tensorflow-and-pytorch-for-deep-learning.pdf
https://blogs.mathworks.com/deep-learning/2022/03/18/importing-models-from-tensorflow-pytorch-and-onnx/
https://www.mathworks.com/help/deeplearning/ref/importtensorflowlayers.html#mw_8c774782-3a98-4dfc-838a-50eb34865d97
https://blogs.mathworks.com/deep-learning/2022/10/04/whats-new-in-interoperability-with-tensorflow-and-pytorch/
https://www.mathworks.com/products/deep-learning-hdl.html
https://www.mathworks.com/help/deep-learning-hdl/ug/supported-networks-layers-boards-and-tools.html

MATLAB speaks Startups




MATLAB and Simulink for Startups
Get Low-Cost Access to MATLAB and Simulink

Research projects, develop prototypes, and take ideas from concepft fo
production

== § Talk to our team to learn more

:,&-J\K | “”Jl ' h I
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MATLAB and Simulink for Startups
Get Low-Cost Access to MATLAB and Simulink

P~ S e

MATL AB ‘i@ MATLAB and
Suite E Simulink Suite

MATLAB and Simulink
with 90+
add-on products

MATLAB with 40+ add-
on products




MathWorks Startups Program benefits

 Get MATLAB, Simulink, and add-on products at
low startup pricing

« Support from application engineers and
technical support

* Training options in local languages, including
50% off training credits

« Co-marketing opportunities to showcase your
technology or products

=
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