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Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural 
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Summary All
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Artificial Intelligence on Embedded Devices

Airborne Image 

Analysis

Airborne Image 

Analysis

Autonomous DrivingAutonomous Driving Industrial InspectionIndustrial Inspection

Medical Image 

Analysis

Medical Image 

Analysis

Wireless Modulation 

Classification

Wireless Modulation 

Classification

Radar Signature 

Classification

Radar Signature 

Classification

Satellite NavigationSatellite Navigation
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Industry Trends
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(Source: embedded.com / AspenCore Media)

https://www.embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/
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Machine learning has been deployed on ground segment applications 

for several years

Telemetry Outlier Detection Geospatial Analytics

➔ now moving into space
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Deep Learning and AI in space

https://www.electronicdesign.com/technologies/embedded-revolution/article/21212499/mathworks-a-promising-future-for-ai-and-autonomy-in-space?cid=?s_eid=PSM_25538%26%01A+Promising+Future+for+AI+and+Autonomy+in+Space|LinkedIn|PostBeyond
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Deep Learning Helps Detect Gravitational Waves
Hunting for Black Holes with Artificial Intelligence

▪ Max Planck Institute used AI and laser interferometry to detect 

gravitational waves caused by space-time distortions in our solar system.

▪ AI is used to predict misalignments for key optics.
Link to user story

https://www.mathworks.com/company/mathworks-stories/deep-learning-ai-and-laser-interferometry-detects-gravitational-waves.html
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The biggest challenge to deploying AI algorithms on-board 

is verification and validation

EUROCAE WG114 – SAE G34

EASA Concept Paper:  

First usable guidance for Level 1 & 2 

machine learning applications

Commercial Aviation



99

Case-study: Lunar Crater Detection Deep Neural Network
Why Crater Detection?

▪ Surfaces such as the moon 

contain hazards: surface 

features that may damage a 

spacecraft (e.g. slopes, 

craters, rocks)

▪ On-board Hazard Detection 

and Avoidance (HDA) is 

needed to ensure safe 

autonomous landing
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AI-Driven System Design and Collaboration

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

System Design

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment

Modelling and Validation 
of Deep Neural Networks Deployment and Validation 

of Deep Neural Network on FPGAs
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Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural 
Network
▪ Get first results faster with low code / no code approach
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural 
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All



Efficient Modelling of a Lunar Crater 
Detection Deep Neural Network



1313

Featured Example: Detecting Objects with YOLO v2

▪ You Only Look Once

▪ Real-time object detector

▪ Surveillance, Target Recognition

Predictions

YOLO

CNN

Network

Decode 

Predictions

Build, test, and deploy a deep learning solution that can detect objects in images and video.

https://www.mathworks.com/help/vision/ug/train-an-object-detector-using-you-only-look-once.html
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Lunar Lander Video from PANGU

Planet and Asteroid Natural Scene Generation Utility

DEMO
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Lunar Crater Detection in MATLAB with Deep Learning DEMO
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Demo workflow of the Lunar Crater Detection DEMO

Data (image) preprocessing: 
augmentation, labelling

Import external Yolov2 model 

and translate to MATLAB code

Experiment and tune 

model in MATLAB

Verify and Validate

the tuned model



Low code  
No code AI 

Interoperability with
TensorFlow, PyTorch

and ONNX

Verification and Validation 
of AI models



Low code
No code AI 

Interoperability with 
TensorFlow, PyTorch

and ONNX

Verification and Validation 
of AI models

How to accelerate prototyping steps to 
get first results faster
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Accelerate prototyping to get first results faster

Many interactive no code apps in multiple domains: 

data handling, images, signals, features extraction, etc.

Easy and common data workflow: import, visualize, 

manipulate, train/test, export the MATLAB code.

Users can build and share custom apps with other users

(who have or don’t have MATLAB)
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▪ MATLAB® apps are interactive applications 

written to perform technical computing tasks

▪ Apps are included in many MATLAB products 

▪ The Apps tab of the MATLAB Toolstrip shows 

you the apps that you currently have installed

MATLAB apps – Definition
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I spend too much time labelling 
my data, having too many images 
in my dataset 

I spend too much time labelling 
my data, having too many images 
in my dataset 

I have multiple interactive apps 
that facilitates labelling – images, 

videos, signals, lidar and more

I have multiple interactive apps 
that facilitates labelling – images, 

videos, signals, lidar and more
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Spend less time preprocessing and labeling data
Synchronize disparate time series, filter noisy signals, automate labeling of video, and more.

Use labeling apps for deep learning workflows like 

semantic segmentation

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation
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Labeler Apps

Image Labeler (Computer Vision Toolbox) Video Labeler (Computer Vision Toolbox)

Lidar Labeler (Lidar Toolbox)

▪ Label ground truth for image, video, and 

lidar data

▪ Important for training networks for:

– Classifiers

– Object Detectors

– Segmentation

▪ Features:

– Create label definitions and attributes.

– Semi automated or automated labeling 

with built-in or custom algorithms

– Blocked processing support (image)

– Superpixel automation (Image, Video)

https://www.mathworks.com/help/vision/ref/videolabeler-app.html
https://www.mathworks.com/help/lidar/ref/lidarlabeler-app.html
https://www.mathworks.com/help/vision/ref/imagelabeler-app.html
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Data Preparation: label continuous images from video DEMO

Interactive labelling

Label manually 

each crater
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Data Preparation: label continuous images from video DEMO

Interactive labelling



3131

Data Preparation: label continuous images from video DEMO

Interactive labelling
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Data Preparation: label continuous images from video DEMO

Export Labels to workspace
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Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually 

craters for first frames

Frame #1
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Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually 

craters for first frames

Frame #2
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Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Label manually 

craters for first frames

Frame #3
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Data Preparation: temporal automation algorithms DEMO

Create and import a custom automation algorithm to automatically label your data

Labels are 

automatically

computed

Frame #4 → #end
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I am a domain expert, but don’t 
have any skills in AI modelling…
I am a domain expert, but don’t 
have any skills in AI modelling…

I have multiple interactive apps 
used for AI modelling, to build, 

train and test models.

I have multiple interactive apps 
used for AI modelling, to build, 

train and test models.
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Spend less time visualizing, training and testing AI models

▪ AI modelling apps: visualize, train, test, 

experiment, optimize models

▪ Important for:

– Signals, time series, images

– Have results quickly and export MATLAB code to 

automate process

– Learn while using apps – no AI skills needed to 

manipulate

▪ Features:

– AutoML for classification & regression models

– Design, train, test, tune & quantize deep learning

models

– Reinforcement learning

Classification/Regression Learner App

Deep Network Quantizer App

Experiment Manager App
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AI Modeling: interactive network designer

Model design
and tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Visualize, customize, (re)train & (re)test deep learning model trough interactive apps
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AI Modeling: tune deep learning model* DEMO

Model design 

and tuning

Hardware 

accelerated training

Interoperability

AI Modeling

*This deep learning model has been imported in MATLAB from ONNX –

presented in the next part

Tune AI models with hyperparameters optimization trough interactive apps
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AI Modeling: tune deep learning model* DEMO

*This deep learning model has been imported in MATLAB from ONNX – presented in the next part

You can put any 

hyperparameters with 

range of values
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AI Modeling: tune deep learning model DEMO

You can tune with 

Exhaustive Sweep or 

Bayesian Optimization
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AI Modeling: tune deep learning model DEMO

You can run optimization 

sequentially, in parallel or 

in batch mode
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AI Modeling: tune deep learning model DEMO

You just click run, and 

you can debug each 

experiment
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AI Modeling: tune deep learning model DEMO

Interactive and live 

training experiments
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AI Modeling: tune deep learning model DEMO

Select best model 

regarding metrics
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AI Modeling: tune deep learning model DEMO

Export model and 

generate code 
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What does HPC usage look like for Model Training?
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I don’t have enough hardware 
resources to tune my neural network 
model

I don’t have enough hardware 
resources to tune my neural network 
model

You can scale training and tuning on 
servers and cloud in one click

You can scale training and tuning on 
servers and cloud in one click
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Scale Up to Parallel Multi-GPU Training – no code low code
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Hardware acceleration and scaling are critical for training
MATLAB accelerates AI training on GPUs, cloud, and datacenter without IT skills

Model design and 

tuning

Hardware 

accelerated 

training

Interoperability

AI Modeling
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Optimized crater detection model



Low code
No code AI 

Interoperability with 
TensorFlow, 

PyTorch and ONNX

Verification and Validation 
of AI models

Enable cross-language collaboration by 
interoperating with TensorFlow and PyTorch
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Why bring MATLAB & Python together?

Take advantage of both languages and tools

Bring different teams together for a common project

Make your your flow better and whole workflow more 

robust
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I need to use a network built and 
trained in PyTorch
I need to use a network built and 
trained in PyTorch

You can import and convert 
PyTorch/TensorFlow DL models into 

MATLAB with native functions

You can import and convert 
PyTorch/TensorFlow DL models into 

MATLAB with native functions
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Why bring MATLAB & Python together for Deep Learning?

Simulink, 

Simscape

Code 

generationVnV

Apps, 

Low code 
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Let’s Explore What We Can Do With Imported Model

Pruning, Quantization
Code Generation

Visualization, 
Verification

Analyze Network
Retrain

System Integration
(with Simulink)

importONNXNetwork

ONNX Model

Custom Training Loop

Automatic Differentiation

Weight Sharing

Reinforcement Learning

Automated Driving

Control Systems

MATLAB Neural Network Model
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Import and convert PyTorch & TensorFlow models

exportNetworkToTensorflow

importTensorFlowNetwork importNetworkFromPyTorch

importONNXNetworkexportONNXNetwork

https://www.mathworks.com/help/deeplearning/ref/exportnetworktotensorflow.html
https://www.mathworks.com/help/deeplearning/ref/importtensorflownetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importnetworkfrompytorch.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html
https://www.mathworks.com/help/releases/R2022b/deeplearning/ref/importonnxnetwork.html
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Training and Evaluation

▪ trainYOLOv2ObjectDetector –

train a YOLO v2 object detector 

using training data

▪ Accelerated training using GPU

>> [detector, info] = 

trainYOLOv2ObjectDetector(trainData,lgraph,options);

>> detector = 

yolov2ObjectDetector with properties:

ModelName: 'Car'

Network: [1×1 DAGNetwork]

ClassNames: {'Car'}

AnchorBoxes: [3×2 double]

>> [detector, info] = trainYOLOv2ObjectDetector(trainData,lgraph,options)

Training on single GPU.

|========================================================================================|

|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  |

|         |             |  (hh:mm:ss)    |     RMSE     |     Loss     |      Rate       |

|========================================================================================|

|       1 |           1 |       00:00:02 |         7.41 |         54.8 |          0.0010 |

|       4 |          50 |       00:01:14 |         0.90 |          0.8 |          0.0010 |

|       7 |         100 |       00:02:26 |         0.86 |          0.7 |          0.0010 |

|      10 |         150 |       00:03:36 |         0.81 |          0.7 |          0.0010 |

|========================================================================================|
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Training and Evaluation

▪ Set of functions to evaluate trained 

network performance
– evaluateDetectionMissRate

– evaluateDetectionPrecision

– bboxPrecisionRecall

– bboxOverlapRatio

>> [ap,recall,precision] =      

evaluateDetectionPrecision(results,stopSigns(:,2));

evaluateDetectionPrecision
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Interoperability: Import Yolov2 ONNX network into MATLAB DEMO

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling
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Generate massive 

realistic data with 

physics-based

Verify and validate –

certify – the requirements

Generate 

C/C++/HDL/CUDA code 

automatically

Integrate to a unified 

testing lifecycle 

Why AI for MBD users?
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Deep Learning blocks library

MATLABFunction Block
Converter for 

PyTorch/TF models

If no corresponding library

If corresponding library

Deploy AI model on embedded device



Low code
No code AI 

Interoperability with 
TensorFlow, PyTorch

and ONNX

Verification and Validation 
of AI models

Use methods from native MATLAB 
or developed by community to verify 
your deep learning models
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The biggest challenge to deploying AI algorithms on-board 

is verification and validation

EUROCAE WG114 – SAE G34

EASA Concept Paper:  

First usable guidance for Level 1 & 2 

machine learning applications

Commercial Aviation
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Why verification is essential in your workflow?
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Verification is present in many steps in the V&V cycle
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Are my network robust
enough?
Are my network robust
enough?
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Neuron Coverage for Deep Learning robustness

https://github.com/matlab-deep-learning/neuron-coverage-for-deep-learning

https://github.com/matlab-deep-learning/neuron-coverage-for-deep-learning
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Neuron Coverage for our crater detector DEMODEMO

Integration with 

complex systems

System verification 

and validation

System simulation

System Design
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Is Neural Coverage meaningful and stable? DEMODEMO

1 - Create “equivalent” network 

– same architecture and sizew1

w3

w2

𝑤1

2

w3

𝑤2

2
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Is Neural Coverage meaningful and stable? DEMODEMO

w1

w3

w2

𝑤1

2

w3

𝑤2

2

100% same 
predictions

2 – Verify predictions
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Is Neural Coverage meaningful and stable? Yes and no DEMODEMO

w1

w3

w2

𝑤1

2

w3

𝑤2

2

3 – Compare coverage

67% 
covered

33% 
covered?
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« Lift a stone and find nothing is to move forward »
Me

Source: Ideogram.ai
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Deep Learning Toolbox Verification Library

Verify deep learning network robustness against adversarial examples 

and to compute the output bounds for a set of input bounds.

+
Crater

No craterδ Neural 

Network

verified unproven

Formal Verification

violated

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library

https://www.mathworks.com/help/deeplearning/deep-learning-verification.html

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/help/deeplearning/deep-learning-verification.html
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Deep Learning Toolbox Verification Library DEMODEMO

+δ
Integration with 

complex systems

System verification 

and validation

System simulation

System Design
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Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 20
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Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 30
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Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 50
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Deep Learning Toolbox Verification Library DEMODEMO

Perturbation = 100
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Average precision vs noise perturbation DEMODEMO

Perturbation

Av
er

ag
e p

re
cis

ion
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#Craters vs noise perturbation DEMODEMO

Perturbation

Av
er

ag
e p

re
cis

ion

Perturbation

Number of craters
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Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural 
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All



Efficient Deployment of a Lunar Crater 
Detection Deep Neural Network on FPGAs



Deploying Deep 
Neural Networks on 

FPGA / SoC

Optimize model 
performance on FPGA

Pre-processing sensor data for 
Deep Learning applications



Deploying Deep 
Neural Networks on 

FPGA / SoC

Optimize model 
performance on FPGA

Pre-processing sensor data for 
Deep Learning applications

Deep Learning on FPGA from 
MATLAB in 5 steps
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Lunar Crater Detection
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FPGA is a good choice for lower power deep learning applications 

▪ Qualified for space, radiation hardened

▪ Low Latency

▪ High speed I/O connectivity

▪ Handling data input from multiple sensors (cameras, LIDAR, ... sensors)

▪ Adding extra capabilities beyond AI without requiring an extra chip

GPU ARM FPGA ASIC

Speed High Low High High

Power 
Consumption

High Low Low Lowest

Engineering 
Cost

Medium Low Medium High
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Challenges of Deploying Deep Learning to FPGA Hardware:

Each stride is an 11x11x3 matrix multiply-accumulate

→105M floating-point multiply operations!

55 

55

96

filters

stride=4

224

224

11x11

96 filters of 11x11x3 of 32-bit parameters →140k bytes

11x11

→1.16M bytes of activations
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Challenges of Deploying Deep Learning to FPGA Hardware

conv

1

conv

2

conv

3

conv

4

conv

5
fc6 fc7 fc8input Total

140K 1.2M 3.5M 5.2M 1.8M 148M 64M 16M
Parameters

(Bytes)
n/a 230 M

1.1M 728K 252K 252K 168K 16K 16K 4K
Activations 

(Bytes)
588K 3.1 M

105M 223M 149M 112M 74M 37M 16M 4MFLOPs n/a 720 M

Off-chip RAM

Block RAM

DSP Slices
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Deploying Deep Learning to FPGA Hardware Requires Collaboration

140K 1.2M 3.5M 5.2M 1.8M 148M 64M 16M
Parameters

(Bytes)

conv

1

conv

2

conv

3

conv

4

conv

5
fc6 fc7 fc8

n/a

input Total

230 M

1.1M 728K 252K 252K 168K 16K 16K 4K
Activations 

(Bytes)
588K 3.1 M

105M 223M 149M 112M 74M 37M 16M 4MFLOPs n/a 720 M

ResizeResize
Acquire 

data

Acquire 

data

Mem i/fMem i/f

Optimize:

• Network / layers

• Fixed-point quantization

• Processor micro-architecture

Output / 

display

Output / 

display
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The Ultimate Challenge

You can either find somebody: 

who has horn (FPGA), 

or looks like a horse (Deep Learning), 

or is purple (Application) 

but not all 3 ….
(after all purple unicorns do not exist)
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System Requirements Drive AI Design and 

the need for Collaboration

Systems 

Engineer

(purple)

Deep Learning 

Practitioner

(horse)

Hardware

Engineer

(horn)

Camera specsCamera specs

AccuracyAccuracy

LatencyLatency

CostCost

PowerPower
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Application knowledge

AI-Driven System Design and Collaboration

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

System Design

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment

Deep Learning knowledge

FPGA knowledge  
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AI-Driven System Design and Collaboration

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

System Design

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment
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Customizable Deep Learning Processor

Percentage resource 

usage on ZCU102 board

Activation

Data Read/Write 

Arbitrator 

Activation

Data Read/Write 

Arbitrator 

Weight

Data Read 

Arbitrator 

Weight

Data Read 

Arbitrator 

Debugger/ 

Instruction

Data Read/Write 

Arbitrator 

Debugger/ 

Instruction

Data Read/Write 

Arbitrator 

Memory Access Arbitrator Modules

Processing Modules

DDR Memory

Vendor Memory Interface IP

Profiler & 

Debugger 

Utilities

Top-level

Scheduler

Module

Conv 

Kernel

Conv 

Kernel

FC 

Kernel

FC 

Kernel

Custom 

Kernel

Custom 

Kernel

FPGA Deep Learning Processor IP

AXI4 Masters 

AXI4 

Slave

▪ Spend FPGA resource for only 

the layer kernels used in your 

network

0

10

20

30

40

50

60

70

80

90

Full DUT
Processor

Conv Only
no LRN

FC Only LSTM
Processor

LUT BRAM DSP
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HDL Coder

Deep Learning HDL Processor steps

Layer 

control 

instructions

Weights & 

Activations

IP core interface

DL Processor 

HDL

Application 

logic

Deep Learning Processor

Quantize
Compile & 

Deploy Network

FPGA Bitstream

Analyze 

Profile

Build ProcessorCustomize

Estimate
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Crater Detection Example

112

Application 

logic

Pre-processing: 

Extract regions and 

resize

Pre-processing: 

Extract regions and 

resize

Post-processing: 

Annotate and label

Post-processing: 

Annotate and label

Inference: Predict 

using trained network

Inference: Predict 

using trained network
FPGA

DEMO
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Run Deep Learning on FPGA from MATLAB in 5 steps

113

>> wobj=dlhdl.Workflow('Network', detector.Network, 'Bitstream', 'zcu102_single’);
>> dn = wobj.compile;
>> wobj.Target = dlhdl.Target('Xilinx', 'Interface', 'Ethernet', 'IPAddress', '192.168.4.2');
>> wobj.deploy;
>> [predict_out, speed] = wobj.predict(img_pre,'Profile','on');
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>> deepNetworkDesigner

Application 

logic

Profile FPGA Prototype and Iterate in MATLAB

Layer 

control 

instructions

Weights & 

Activations

R
e
-t

ra
in



Deploying Deep 
Neural Networks on 

FPGA / SoC

Optimize model 
performance on FPGA

Pre-processing sensor data for 
Deep Learning applications

Compression Techniques for Deep 

Neural Networks
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Two Compression Techniques

Pruning

deep neural networks

Quantization of 

deep neural networks
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Taylor Approximation Pruning

Remove unimportant

parts of the network

Trained 

Network

Pruned + 

Retrained 

Pruning process

Evaluate importance 

of weights

Remove the least 

important weights

Fine Tuning 

(training)

Retrain

prunableNetwork = taylorPrunableNetwork(dlnet)

prunableNetwork = 
TaylorNetworkPruner with properties ...
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Projected Layer Pruning

High-dimensional space of input and 

output neurons holds redundancies

Technical article on projected layer pruning

https://www.mathworks.com/company/newsletters/articles/compressing-neural-networks-using-network-projection.html?s_tid=srchtitle
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Collaborate to Quantize Network

Systems 

Engineer

Deep Learning 

Practitioner

Hardware/Software 

Engineers
Fully 

Connected 

Module

Convolution 

Module

Processor Control

Memory Access

A
c
ti
v
a

ti
o

n
s

A
c
ti
v
a

ti
o

n
s

A
c
ti
v
a

ti
o

n
s

x

+/-

Σ

32
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

x

+/-

Σ

8
/

DEMO

AccuracyAccuracy

LatencyLatency

CostCost

PowerPower
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Deep Network Quantizer - Int8 Quantization

3

Quantize and Validate 

4
Export quantized 

network

2

Calibrate

1

Import 

Network
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Application 

logic

Quantize Deep Learning Network and Processor in MATLAB

Layer 

control 

instructions

Weights & 

Activations

>> deepNetworkQuantizer
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Application 

logic

Converge on an FPGA-Optimized Deep Learning Network

Layer 

control 

instructions

Weights & 

Activations

% Create target object
hTarget = dlhdl.Target(…)

% Create workflow object, using the target
hW = dlhdl.Workflow(…);

% Compile the network
hW.compile;

% Program the bitstream and deploy the compiled network and weights
hW.deploy;

% Run prediction
[score, speed] = hW.predict(img, ‘Profile’, ‘on’);

Parameters Speed

48 MB 127.1 fps

44 MB 433.5 fps

Quantize

>> deepNetworkQuantizer

int8 Bitstream



Deploying Deep 
Neural Networks on 

FPGA / SoC

Optimize model 
performance on FPGA

Pre-processing sensor data for 
Deep Learning applications

Customizing and Integrating 

Deep Learning Processor IP
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Customizable DL Processor to save FPGA Area

Percentage resource 

usage on ZCU102 board

Activation

Data Read/Write 

Arbitrator 

Activation

Data Read/Write 

Arbitrator 

Weight

Data Read 

Arbitrator 

Weight

Data Read 

Arbitrator 

Debugger/ 

Instruction

Data Read/Write 

Arbitrator 

Debugger/ 

Instruction

Data Read/Write 

Arbitrator 

Memory Access Arbitrator Modules

Processing Modules

DDR Memory

Vendor Memory Interface IP

Profiler & 

Debugger 

Utilities

Top-level

Scheduler

Module

Conv 

Kernel

Conv 

Kernel

FC 

Kernel

FC 

Kernel

Custom 

Kernel

Custom 

Kernel

FPGA DL Processor IP

AXI4 Masters 

AXI4 

Slave

▪ Spend FPGA resource for only 

the layer kernels used in your 

network

0

10

20

30

40

50

60

70

80

90

Full DUT
Processor

Conv Only
no LRN

FC Only LSTM
Processor

LUT BRAM DSP



127127

Application 

logic

Generate Custom Deep Learning Processor HDL and IP Core

% Create a custom processor object
hPC = dlhdl.ProcessorConfig;

% Customize processor characteristics
hPC.TargetFrequency = 300;
hPC.ProcessorDataType = 'int8';
hPC.setModuleProperty('conv', 'ConvThreadNumber', 64);
hPC.setModuleProperty('fc', 'FCThreadNumber',   16);

% Estimate performance
snet = getLogoNetwork;
hPC.estimatePerformance(snet)

% Generate HDL and IP core using HDL Coder
dlhdl.buildProcessor(hPC);

HDL Coder

Custom Processor

IP core interface

DL Processor 

HDL

• Configure processor settings

• Parallel threads, frequency, memory sizes, 

enable/disable modules (conv/fc/…)

• Quantized or single precision floating point

• Target frequency

• Target any hardware

• Synthesizable RTL with AXI mappings

• Automatic Xilinx or Intel implementation
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Deep Learning Processor (DLP) Configuration

HDL Coder

IP core generation 

Workflow

Under the hood:

Simulink model

HDL IP core and 

bitstream
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Estimate Resource Utilization and Performance 

for Custom Processor Configuration

Reference zcu102_int8 bitstream configuration:

▪ Possible performance of 13982 frames per second (FPS) to a Xilinx ZCU102 ZU9EG device

▪ Digital signal processor (DSP) slice count — 2520 (available) / 805 (used)

▪ Block random access memory (BRAM) count — 912 (available) / 388 (used)

Requirements:

▪ Target performance of 500 frames per second (FPS) to a Xilinx ZCU102 ZU4CG device

▪ Digital signal processor (DSP) slice count — 240 (available) 

▪ Block random access memory (BRAM) count — 128 (available) 

DEMO
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Estimate Resource Utilization and Performance for Custom DLP

estimatePerformance

estimateResources
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optimizeConfigurationForNetwork

https://www.mathworks.com/help/releases/R2022b/deep-learning-hdl/ref/dlhdl.processorconfig.optimizeconfigurationfornetwork.html
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Integrate the DL Processor into your bigger system

▪ Generate Generic DL Processor IP core

▪ Define clean input/output frame hand-shaking protocol

▪ Drop the generated DL IP core into your bigger system

Processor Config

GenerateGenerate
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AI-Driven System Design and Collaboration

Model design and 

tuning

Hardware 

accelerated training

Interoperability

AI Modeling

Integration with 

complex systems

System verification 

and validation

System simulation

System Design

Data cleansing and 

preparation

Simulation-

generated data

Human insight

Data Preparation

Enterprise systems

Embedded devices

Edge, cloud, 

desktop

Deployment
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Integrate and Validate YOLO v2 on SoC platforms
Design and Deploy Pre-Processing
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Integrate and Validate YOLO v2 on SoC platforms
Challenge: how to verify communication with memory access and handshake?

▪ Easier modeling of the pre/post processing together with DL Processor

DL Processor IPDL Processor IP

ConvConv FCFC

Scheduler

DDR Memory

AXI4 Master

Post-ProcessingPost-ProcessingPre-ProcessingPre-Processing

Memory access &

Hand shaking
Memory access &

Hand shaking
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Integrate and Validate YOLO v2 on SoC platforms
Solution: Deep Learning HDL Processing System Simulink block

▪ Easier modeling of the pre/post processing together with DL Processor

Post-ProcessingPost-Processing

Pre-ProcessingPre-Processing

Memory access &

Hand shaking

Memory access &

Hand shaking

DEMO
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Integrate and Validate YOLO v2 on SoC platforms
Prove correct communication with memory access and handshake

Error = 6%, Accuracy = 94%
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Utility to export DL Deployment AXI read/write into a file 

(for ARM deployment)

Enables you to initialize the DL Processor IP from your own host target (instead of using MATLAB)

HDL Coder Reference designHDL Coder Reference design

Vendor Memory Interface IP

Custom DL 

Processor IP

Custom DL 

Processor IP

ConvConv FCFC

Scheduler

Pre-

Processing

IP core

DDR Memory

Post-

Processing

IP core

Deep Learning 

NetworksMATLAB

dlhdl.Workflow()

dln File Target Deployment File

Deploy Simple Adder Network 

by using MATLAB Deployment 

Script and Deployment 

Instructions File example

https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
https://www.mathworks.com/help/deep-learning-hdl/ug/deploy-simple-adder-network-by-using-MATLAB-deployment-utility-and-delpoyment-file.html
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Network Examples

Network Examples Application Area Type Release

VGG16/VGG19 Classification CNN

ResNet18/ResNet50 Classification/Detection CNN

YOLO v2 Object detection CNN

MobileNet v2 Classification/Detection CNN

1-Dimentional CNN networks Classification/Detection CNN

Segmentation networks Segmentation CNN

LSTM networks Signal processing RNN

YOLO v3 Object detection CNN, MIMO

GRU network Signal processing RNN

YAMNet (Audio toolbox) Classification/Detection CNN

Projected LSTM Signal processing RNN
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Application 

logic

Collaborate to Converge on Deep Learning FPGA Implementation

FPGA

CPU

GPU

Tune for system requirements

Prototype from MATLAB

Configure and generate RTL

Deep Learning HDL Toolbox

AI Modeling

System Design

Deployment
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Agenda

Time Topic Who

14.00u Introduction All

14.15u

Efficient Modelling of a Lunar Crater Detection Deep Neural Network
▪ Get first results faster with low code / no code approach​
▪ Enable cross-language collaboration by interoperating with TensorFlow and PyTorch
▪ Verification and Validation of AI models

MathWorks

16.00u Break All

16.30u

Efficient Deployment of a Lunar Crater Detection Deep Neural 
Network on FPGAs
▪ Deploy Deep Learning models onto FPGA/SoC platforms
▪ Optimize model performance through on-target profiling and quantization workflows
▪ Pre-processing sensor data for Deep Learning applications

MathWorks

18.00u Next steps All
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Why MATLAB & MathWorks for AI?

Domain-specialized workflows 
for engineering and science

Multi-platform deployment of 
full applications and systems

Platform productivity PeopleInteroperability with Python and 
DL Python-based frameworks
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Examples
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Training Resources

https://matlabacademy.mathworks.com/

https://matlabacademy.mathworks.com/
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MathWorks training options for AI topics
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Resources for Further Learning

▪ Crater Detection - Deep Learning

– Deep Learning Solutions in MATLAB

– Deep Learning Verification Library

– Deep Learning Models

– MATLAB with TensorFlow and PyTorch

– Importing Models from TensorFlow, PyTorch, and ONNX

– TensorFlow-Keras Layers Supported for Conversion into Built-In MATLAB Layers

– What’s New in Interoperability with TensorFlow and PyTorch

▪ Crater Detection - Deep Learning ➔ FPGA

– Deep Learning HDL Toolbox

– Deep Learning HDL Toolbox Supported Networks, Layers, Boards and Tools

https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://github.com/matlab-deep-learning/MATLAB-Deep-Learning-Model-Hub
https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/online/2022/matalb-with-tensorflow-and-pytorch-for-deep-learning.pdf
https://blogs.mathworks.com/deep-learning/2022/03/18/importing-models-from-tensorflow-pytorch-and-onnx/
https://www.mathworks.com/help/deeplearning/ref/importtensorflowlayers.html#mw_8c774782-3a98-4dfc-838a-50eb34865d97
https://blogs.mathworks.com/deep-learning/2022/10/04/whats-new-in-interoperability-with-tensorflow-and-pytorch/
https://www.mathworks.com/products/deep-learning-hdl.html
https://www.mathworks.com/help/deep-learning-hdl/ug/supported-networks-layers-boards-and-tools.html


MATLAB speaks Startups
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MATLAB and Simulink for Startups

Get Low-Cost Access to MATLAB and Simulink

Research projects, develop prototypes, and take ideas from concept to 
production

Talk to our team to learn more
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MATLAB 

Suite

MATLAB with 40+ add-

on products

MATLAB and 

Simulink Suite

MATLAB and Simulink 

with 90+ 

add-on products

MATLAB and Simulink for Startups
Get Low-Cost Access to MATLAB and Simulink
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• Get MATLAB, Simulink, and add-on products at 

low startup pricing

• Support from application engineers and 

technical support

• Training options in local languages, including 

50% off training credits

• Co-marketing opportunities to showcase your 

technology or products

MathWorks Startups Program benefits
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