HMRM: A highly miniaturised radiation monitor ESA/ESTEC radiation and plasma monitoring workshop May 13-14th, 2014

Contact: Sev.gunes-lasnet@stfc.ac.uk

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

Overview

Imperial College

- HMRM: A Highly Miniaturised Radiation Monitor, designed by the Rutherford Appleton Lab and Imperial College London
- HMRM design and competitive characteristics
- Performances
- Flight in 2014 and next steps

workshop, May 2014

HMRM – The context

- Existing sensors fall into two classes
 - "Low" resource requirements / dose data
 - "High" resource requirements / "scientific" grade data

Credit: Sandia national lab

Credit: SREM

- HMRM objectives: Bridge the gap through miniaturisation without sacrificing the radiation data quality
- Radiation data temporally resolved, particle flux and spectra

????

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

- Ambiguity exists where the energy deposited in the detector by a low energy particle is the same as the energy deposited by a MIP passing through the detector
- \bullet Active volume of APS detector: 12 μm with 50-500 μm substrate
- \bullet Active volume of Silicon diode: > 50 μm

• With APS sensors, judicious selection of Silicon substrate thickness allows the dE/dx curve to be sampled and uniquely identify the particle species and energy

State of the art sensing and standard interfaces

- State of the art sensing
 - 0.18µm CMOS image sensor technology
 - Digital and analogue read out
 - Integrated DAC, temperature sensor
 - All integrated into a very small mixed asic
 - Used in a stack configuration in HMRM

- Standard interface for the integrated stacked monitor
 - CAN standard interface
 - CCSDS compliant TM frames
 - Requires 5V power line

Imperial College London

HMRM – the Highly Miniaturised Radiation Monitor as it exists now

- Electron energy range: 35 keV-6MeV
- Proton energy range: 600 keV-500MeV
- Mass: 52g
- Power: < 1W
- Typical particle rate 10e8 #/cm2/s
- Stacked monitor and detector ASIC

Imperial College London

Design Summary – integrated / chip

Characteristic	Specification					
Sensing element	50 x 50 array of 20 μ m x 20 μ m , APS detectors					
Configuration	Either single chip, or integrated monitor					
Mass	Integrated monitor: 52g (including fasteners Single Chip: 0.8 g and connector) in a stack configuration					
Power	1 W (TBC) depending of number of detectors in stack	Single Chip: < 200 mW per ASIC				
Volume	Integrated monitor: 20x25x30mm	Single chip (unpackaged): 2.54x10x0.6 mm				
Radiation measurements	Integrated Monitor: Dose Dose rate Particle radiation spectra: • Electrons: 0.06 – 6 MeV • Protons: 1 – 500 MeV	Single Chip: Dose Dose rate				
Maximum flux	10 ⁸ #/cm ² /s					
Aux. measurement	Temperature					
Interface	Integrated Monitor: Data: TM/TC CCSDS CAN Power: 5 V (standard)	Single Chip: Data: CMOS logic I/O Power: 3.3 V + 0.3V references				

Imperial College London

Performances - Geometry design

- **1.** Conceptual design: APS telescope with low threshold for e/p discrimination
 - Parameters: number of sensors and shields, depletion thickness, aperture size
 - Variables: energy thresholds, sensitive area, particle ranges and dE/dx
- **2. Optimisation** with preliminary simulation geometry of particle telescope
 - Parameters: dimensions/materials for wafers, shields, casing, window, algorithms
 - Variables: thresholds, effective area, efficiency and purity for PID
- **3. Validation** with <u>full simulation geometry</u> in 5 reference orbits
 - Parameters: algorithm tables (on-board and ground segment)
 - Variables: ID purity, pile-up probabilities, dosimetry functions, spectral reconstruction

see E. Mitchell's

thesis

ondon

Simulated performance summary

- Electron threshold: 63 keV
- Proton threshold: 1.3 MeV
- Maximum omni/d flux: 1x10⁸ cm⁻²s⁻¹
- Dosimetry
 - Count rate on front sensor
 - Dose rate on all sensors
 - Also cumulative lifetime doses
- On-board alerting functions
 - 3 programmable particle 'channels'
- Offline spectral reconstruction
 - Electron/proton energy spectra

Imperial College London

Primary proton energy / MeV

HMRM REFERENCE ORBITS

ORBIT D (23,222 km, 56° MEO, 14 hrs x3)

electrons >100 keV

orbit	type	altitude	incl.	period	comment	
Α	LEO	700 km	98°	1.65 hrs	SSO; weather, remote sensing	
В	MEO	400-4,000 km	83°	2.19 hrs	Elliptical; space science	
С	MEO	10,000 km	0°	5.79 hrs	"Optimal" earth observation MEO	
D	MEO	23,222 km	56°	14.07 hrs	Navigation	
Е	GEO	35,786 km	0°	23.93 hrs	Communications, meteorology	

	orbit	max e/s	max p/s
	Α	10,000	7
MEOs	В	100,000	200
are most 🖌	С	100,000	30,000
challenging	D	100,000	200
	Е	30,000	1

Maximum instantaneous flux

HMRM count rates: geometrical factor AEF $\sim 0.1 mm^2$ Instantaneous omnidirectional flux of $10^8~cm^{-2}s^{-1} \rightarrow 10^5~c/s$

With dynamic shuttering, the HMRM can cope with this count rate and retain PID capability (i.e. low pile-up)

Achievements to date

- Completed TRP contract
- HMRM integrated as part of Tech Demo Sat -1 payload, launch June 2014
- Monitor performance functionally characterised
- Tests with ²⁴¹Am, ⁹⁰Sr and ⁵⁵Fe have demonstrated performance

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

Imperial College London

30

40

50

20

10 2 Sensor 3

Functional testing

- HMRM has been exposed to two radiation sources: An ²⁴¹Am (alpha particle source) and a ⁹⁰Sr (beta particle source)
 - Hits are clearly visible in the detectors images.
 - Exposure to the ⁹⁰Sr, which gives more penetrating electrons, has enabled observing coincident (S2, S3) hits. A larger-deposit is observed on the back sensor as expected for a slowing down electron.
 - The two dark rows of pixels visible in the detectors images have been corrected after optimisation of the readout waveform timing.
- The results with alpha and beta particle sources have confirmed that the prototype with a configuration of two stacked detectors is fully functional.

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

RAL Space

Performances summary

- Electron Energy Range 35 keV 6 MeV
- Proton Energy Range 600 keV 500 MeV
- Maximum Particle Flux 10⁸ #/s/cm² guaranteed by its electronic shutter technique
- Heavy Ion Detection: Detection and count; configurable range of energy detected by threshold tuning in HMRM algorithm
- State of the art sensing
 - 0.18μm CMOS image sensor technology, patented radiation hard techniques
 - Digital and analogue read out; integrated DAC, temperature sensor
 - All integrated into a very small mixed asic
 - Used in a stack configuration in HMRM
- The results with alpha and beta particle sources have confirmed that the prototype with a configuration of two stacked detectors is fully functional.
- Calibration with Fe55 is ongoing and beam line testing scheduled for Q3 2014

HMRM 2014 flight

- 2014 validation flight has been successfully secured : TDS-1 (SSTL)
 - HMRM delivered successfully to SSTL TDS-1
 - Electrical acceptance tests on TDS-1 fully successful
 - Mounted on the spacecraft, awaiting launch Q3 2014
 - Commissioning preparation has started
 - Operations start Q4 2014
- HMRM TDS-1 in orbit demonstration flight will acquire in situ data and provide valuable return of experience on HMRM operations

HMRM fitted on TDS-1 at SSTL, Q1 2013

HMRM bridges the gap

Imperial College London

Status and way forward

• <u>Status:</u>

- Functional sensing ASIC available now; v3 optimised will be available Q4 2014, with lower power consumption
- Integrated stacked monitor EM available now and flying on TDS-1 this year
- Further Fe55 calibration ongoing now and beam line testing scheduled for Q3 2014
- In-orbit demonstration secured on-board TDS-1, launch Q4 2013

- Way forward:
- Qualified HMRM availability target: 2016, qualification strategy supported by ESA – aiming to be fast track
- Interested customers who have already expressed their support:
 - ESA
 - NASA /JPL
 - CNES & ONERA
 - SSTL
 - Japan
 - Airbus space and defense and ThalesAleniaSpace

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

Conclusions

- HMRM bridges the gap between scientific grade radiation data instruments and radfets, without sacrificing data quality, for the mass budget of a matches box
- HMRM state of the art sensing mixed ASIC is readily available
- Integrated stacked monitor version EM available
- Qualification strategy supported by ESA, target FMs for 2016
- If you are interested, contact sev.gunes-lasnet@stfc.ac.uk

ESA/ESTEC radiation and plasma monitoring workshop, May 2014

