

Space Radiation and Plasma Environment Monitoring Workshop 13 and 14 May 2014 - ESTEC

Efacec Space Radiation Monitors MFS & BERM

Technology that moves the world www.efacec.com

Contents

MFS & BERM

- Architecture
- Detectors
- ➢ <u>Stack</u>
- Reconstruction Algorithm
- Simulations
- Qualifications
- Performances
- MFS Calibration Data
- MFS Exploitation
- BERM

MFS & BERM Architecture

Efacec Radiation Monitors are based in:

- Physical Concept stack of Silicon Detectors;
- Electronics Ideas ASIC (FE) and FPGA with memories (BE);
 - FE CSA with slow shaper for integration and fast shaper for trigger system;
 - ✓ Integration time 2.125µs and discharge time 10us (both configurable);
 - ✤ BE FPGA and memories running:
 - ✓ Particle recognition process;
 - ✓ Communications;
 - ✓ Health/housekeeping process;
 - Memories scrubbing (configurable);
- LUT All functional parameters are TM/TC configurable by ground;
- Default values stored in EEPROM;

MFS & BERM Detectors

□ Stack of Detectors:

- Both Spectrometers are composed by a single stack of 11 Si detectors;
- No anti-coincidence HW, Ta side shield in BERM;
- MFS has a field of view of 40^o limited by its Ta collimator;
- BERM has the same field of view, but it is defines either by the Ta collimator and top detector;
- All detectors are 300um thickness with an entrance window of less than 50nm;
 - Exception is the top detector in BERM which is 200um – remaining parameters identical;
- MFS collimator shielded by Lexan/Kapton;
- BERM collimator shielded by Nickel;

MFS & BERM Stack

MFS & BERM Reconstruction

- □ Particle identification by dE/dx;
- Compensation of electronic noise;
- Configurable trigger scheme;
- Embedded veto algorithm;
- Adjustable gain by channel (use of weight factors in reconstruction);
- Built in test modes to check:
 - ASIC and analogue chain;
 - Digital algorithmic;
- □ Failure detectors can be skipped in the reconstruction algorithm;
- Default LUT stored into internal EEPROM;
- □ Values can be overloaded by TC;

MFS & BERM Simulations

- GEANT4 simulation has been performed using GEANT4 version 9.4.p01
- Full GEANT4 model including small components has been analyzed;
- Simulation for test beam campaign has been performed for instrument calibration;
- After irradiation correlation analysis using GEANT4 has been extensively studied to understand instrument results at beam facilities;

MFS & BERM Simulations

- Full 4Pi simulation performed
- □ Isotropic or fixed particle distribution
- Cosine-law particle momentum (biased or unbiased)
- Particle generation following on-orbit spectrum
- Simulation/(Realistic distribution) scaling factor correction
- Hadronic Process list used in the model QGSP_BERT_HP (Bertini Cascade)
- Particles simulated
 - Electrons
 - Protons
 - Heavy lons
- Deposited energy in detectors computed as ADC channel output for test campaign comparison
- Also output converted in Matlab format for post processing outside GEANT4

MFS & BERM Qualifications

- ASIC Qualification (Ideas VA32TA2.2):
 - Under BERM program ASIC has been subjected to an up-screening program of equivalent quality Level 1;
 - A LET threshold of 13MeV.cm²/mg was measured;
 - An active SEL protection to power re-cycle ASIC had been implemented into BERM with a reaction time < 1us</p>
 - > On MFS SEL protection is performed by a higher tier current consumption monitorisation;
 - During tests ASIC could recover from SEL even when reaction takes some seconds;
 - Detectors Qualification:
 - Under BERM program ASIC has been subjected to an up-screening program of equivalent quality Level 1;
 - Leakage below <50nA on all flight detectors @ room temperature;</p>
 - Displacement damage test shows excellent linearity for Bepicolombo levels and all recovers their nominal leakage after annealing;

PFM #1#2#3	Fluence = 7,07e11 Flux = 99,7MeV	I _{lkg} #1 S.N.:2.71 [nA] EFA9020 01 0R5	I _{lkg} #2 S.N.:2.65 [nA] EFA9020 01 0R5	I _{lkg} #3 S.N.:3.13 [nA] EFA9020 02 150
0%	0,00E+00	0,12	0,20	5,74
25%	1,80E+11	9,1	8,5	2405,4
50%	3,60E+11	17,6	16,8	4591,7
75%	5,40E+11	25,9	25,1	6675,5
100%	7,20E+11	34,5	33,7	8673,4

Table 2-8 - Displacement Damage Leakage Automatically Acquired during Irradiation

MFS & BERM Performances

	MFS	BERM	Units
Power Consumption	4 (average)	5 (average)	W
Weight	2,914	2,143	kg
Envelope	257,3x120,0x108,0	174,8x120,0x107,0	mm ³
Electrons	0,45 to 7 (7 bins)	0,3 to 10 (5 bins)	MeV
Protons	1 to 120 (10 bins)	1 to 200 (8 bins)	MeV
Alphas	5 to 400 (10 bins)	n.a.	MeV
Heavy lons	1 to 50 (10 bins)	1 to 50 (5 bins)	MeV/(mg.cm ²)
Measurements Rate	1e7	1e7	#/(cm².s)
TID (Radfet Dosimetry)	Up to 30	Up to 30	krad
Field of View	40	40	0
Temporal Resolution	1 to 30 step 1	0,5	min.
Communications Protocol	I2C Slave (TPD8) RS485	1553	-
Link Budget	<45	<55	bps
Operating Temperature	-20 to +50	-20 to +50	Oo
Life Time	3 (expansible to 5)	7.6 (expansible to 8.6)	Years

- MFS was full characterized in ground operations:
 - ASIC /analogue chain gain characterized at room, low and high temperatures;
 - Radiation tests performed to characterize:
 - Integration time (hold time delay) and gain;
 - Count Rate Flux;
 - Energy Scan;
 - Background Noise;
 - Field-of-view (tilt);
 - > Particle recognition process fully implemented in Octave/Matlab for LUT optimization
 - > LUT optimization with data smooth by moving average with window of 5 and Landau fit

efacec

MFS Flux

MFS Exploitation

- MFS onboard of Alphasat was launched in 25 of July of 2013;
- MFS IOT performed in 28 of August of 2013;
- MFS switched on after a shedding period on 08 of November of 2013;
- MFS is operating triggering only by its top detector;
- Next activities:
 - Perform a noise level measurement;
 - Perform a full test frontend check to analyze drifts;
 - Update LUT if required;

MFS Exploitation - November

MFS Exploitation - February

MFS Exploitation - March

BERM

□ BERM is being closed;

- BERM Bepicolombo MPO integration foreseen for June 2014;
- A preliminary radiation campaign has to be carried out;
- First radiation tests shows improved performance compared to MFS;
 - Lower Electrons threshold measured around 200-250keV;
- BERM on-ground database calibration composed by the same MFS parameters;
 - BERM LUT needs final validation;

Thank You