Next Generation Radiation Monitor (NGRM)

Space Radiation and Plasma Monitoring Workshop 13-14 May 2014, ESTEC

R. Muff, F. Chastellain, F. Gambarara, RUAG Space Switzerland Zurich (RSSZ)

W. Hajdas, L. Desorgher, Paul Scherrer Institute (PSI)

Overview

- NGRM Project Introduction
- RUAG Heritage with Radiation Monitors
- Key Requirements
- Design Challenges
- Design Approach
- Design Status
- Conclusion

NGRM Project Introduction

- Successor of the Standard Radiation Environment Monitor (SREM)
 → Generic multi-use radiation monitor
- Contract between RSSZ and ESA under co-funded GSTP
- International consortium
 - PSI (CH)

- \rightarrow Detectors' sizing / rad. analysis
- IDEAS (N)
- EREMS (F)
- → Read-out ASIC
- → Controller Electronics Unit

Onera (F)

- \rightarrow Radiation analysis
- Development started in Q3 2011
- Model philosophy: EM, EQM, PFM
- PFM to be embarked on EDRS-C

PAUL SCHERRER INSTITUT

<u>ideas</u>

RUAG Heritage with Radiation Monitors

SREM

- Aim: support scientific missions and provide valuable radiation data for future missions (eg Giove)
- Status: operating since more than a decabe onboard STRV-1c, Proba-1, Integral, Rosetta, Giove-B, Herschel and Planck
- Developed by RSSZ and PSI

RUAG Heritage with Radiation Monitors

Environmental Monitor Unit (EMU)

- Aim: characterize the radiation environment of the Galileo orbits.
- Developed by RSSZ and Qinetiq.

Status:

- 2 EMU units embarked on Galileo FOC satellites to be launched in tbd
- Additional EMU on Galileo tbd
- 2 EMU / SEDA on Japanese Himawari mission

NGRM Key Requirements

- Electrons energy range: 100keV 7 MeV
 - Classification in 8 quasi-logarithmic channels
 - Peak flux of 10⁹ and 10⁷ particles/cm²/s for 0.1 and 1 MeV electrons, respectively
- Protons energy range: 2MeV 200MeV
 - Classification in 8 quasi-logarithmic channels
 - Peak flux of 10⁸ and 10⁶ particles/cm²/s for 2 and 20 MeV protons, respectively
- Heavy Ions: LET (ΔE) spectrum: 0.1 to 10 MeV.cm²/mg, measurable in 8 quasi-logarithmic channels
- Discrimination of electrons vs. protons

NGRM Key Requirements

- Volume: 1 litre
- Mass: 1 kg
- Average power consumption: 1 W
- Lifetime: 15 years in GEO, 12 years in MEO
- Operating temperature range (qualif.): -40° C to +65° C

NGRM Key Requirements

- Reconfigurable TM/TC IF
 - MIL-STD-1553B (implementation baseline for EQM and PFM)
 - CAN
 - SpaceWire
 - RS-422 (optional)
- Primary bus voltage: +28 V or +50 V
- Time resolution: 30 sec to 1 hour
- Data autonomy: 1 month at 5 minutes time resolution
- In-orbit patchable software

Together ahead. RUAG

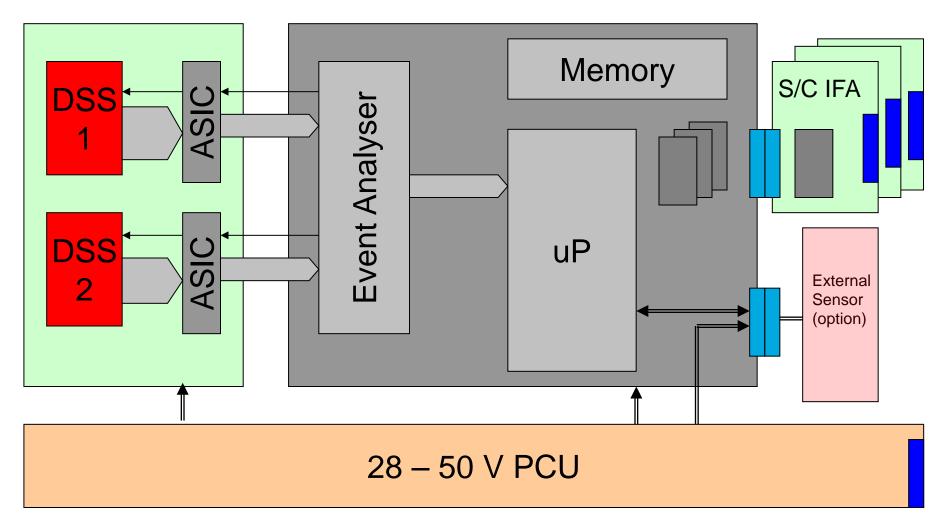
Design Challenges

- Several challenging requirements
 - Also when compared to recent developments like EMU
- Achieving all requirements simultaneously is extremely challenging as most are «competing requirements»

Example of competing requirements

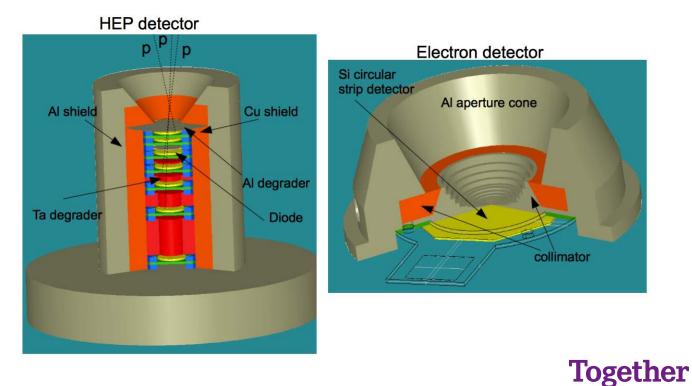
Radiation meas. requirements \Leftrightarrow mass, volume, power consumption

Volume \Leftrightarrow radiation meas. requirements


Power consumption \Leftrightarrow radiation meas. requirements

Reconfigurable TM/TC IF ⇔ mass, volume and cost

Primary bus voltage \Leftrightarrow power consumption


Lifetime \Leftrightarrow mass, power consumption

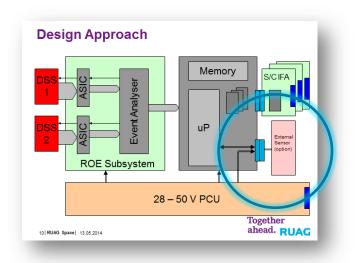
Together ahead. RUAG

- Detectors' design:
 - compact and integrated with RO ASIC while achieving radiation measurement requirements
 - allows reducing mass & volume

ahead. **RUAG**

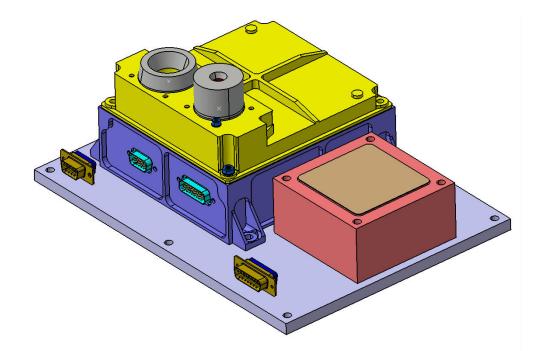
Read-out ASIC: integrates 20 channels within a single die
 allows reducing mass, volume & power consumption

Use of radiation hard components

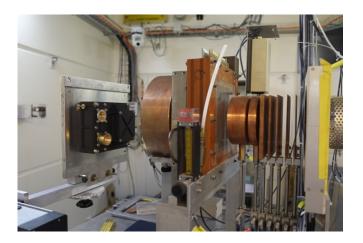

allows reducing mass (by reducing required shiedling)

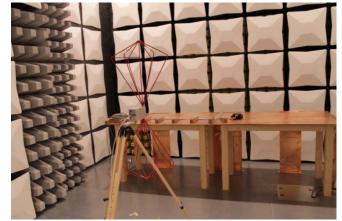
System architecture

- allows reducing power consumption
- allows changing the TM/TC IF by only changing a single board implementing the TM/TC IF physical layer only


Design compliant with listed requirements except for:

- Mass: 1.35 kg (but incl. MLI)
- Average power consumption: approx. 1.8 W (MIL bus !!)
- The design approach also implements the possibility to supply and control an external sensor and use NGRM as host.


External sensor on NGRM (conceptual view)


- NGRM mounted on interface plate to allow ...
 - 1:1 mechanical interface to EMU
 - 1:1 electrical interface (power and data, data frames tbc)
 - Adjust CoG and Mol
 - Accomodate and interface an external sensor for special ranges via the NGRM data stream (→ NGRM as firewall to S/C)
 → Baseline studied in frame of SW study: NGRM + HMRM

Development Status

- End of EM-plus test phase
 - EMC test
 - Thermal test
 - Electron test at PSI Monochromator
 - ✓ Proton test at PSI PIF
- Additional electron and proton tests required at PSI to complete the measurement campaign
- Dedicated papers on radiation performance were presented by PSI in the frame of related conferences (e.g. RADECS 2013)

EQM / PFM Status

- Update of EM design to EQM/PFM (minor modifications)
- EQM AIT expected to start Aug 2014
- PFM DRB planned for late Q4 2014

Note: EQM and PFM quasi parallel

Conclusion

- NGRM was and still is challenging
- The consortium is on good way to achieve the requirements in-line with customer needs by end of this Year
- NGRM is able to measure the radiation environment for most missions, incl. long MEO missions
- The design allows for easy accommodation on upcoming missions
 - Low S/C resource requirement (power, mass, footprint)
 - Flexible TM/TC interface
 - Patchable / configurable software
 - Environmental conditions
- NGRM can be used as host / controller for additional external sensors / detectors

18 | RUAG Space | 23.05.2014

Standard Radiation Monitor → see SREM

ESA, in particular:

• Petteri Nieminen, Tim Watterton, Kevin Goodey

National Delegations to support the GSTP activity

All subcontractors, in particular:

- Laurent Desorgher and Wojtek Hajdas of PSI
- Philip Pahlsson, Suleyman Azman, Gunnar Maehlum of IDEAS
- Jacques Rigail, Anita Bonnet of EREMS
- Daniel Boscher of ONERA

Thank you for your attention!

