Solar energetic particles measured by PAMELA

Alessandro Bruno Università degli Studi di Bari, Italy

on behalf of the PAMELA collaboration

Space Radiation and Plasma Monitoring Workshop, 13-14 May 2014 European Space Research and Technology Centre (ESTEC)

The PAMELA apparatus

Main requirements \rightarrow high-sensitivity particle identification and precise momentum measure

<image>

Size: 130x70x70 cm³ GF: 21.5 cm² sr Mass: 470 kg Power Budget: 360W

A. Bruno

The Resurs-DK1 satellite

- o Mass: ~6.7 tons
- o Height: 7.4 m
- o Solar array span: ~14 m
- Average power (per day):2000 W (PAMELA 360 W)
- Semi-polar (70° inclination) and elliptical (350÷610 km altitude) orbit
- □ Orbital period: 96 min
- ✓ 3-axis stabilized
- Orientation calculated by onboard processor with accuracy <1°
- Angular velocity stabilization accuracy: 0.005 degree/s
- ✤ in orbit since June 15th 2006

PAMELA and SEPs

Multi-wavelength and multi-point observations now available (SDO, SOHO, STEREO, ACE, RHESSI, FERMI, etc) make this a critical time to analyze high-energy SEPs.

Advantages of PAMELA:

- 1. Wide energy range
 - inclusive of the gap region between high energy data from ground-based detectors and low energy observations from spacecrafts.
- 2. Sensitive to composition of SEPs
- 3. Potential to contribute significantly to constraining the injection time-scales.
- 4. Discovery potential to observe positron and concomitant neutrons

STATION LONGITUDE Φ

- In order to analyze anisotropies related to the solar flare, we need to account for the effect of the geomagnetic field on particle propagation.
- Generally (neutron monitors) one is interested in particle "asymptotic directions", i.e. the directions of approach before they encountered the magnetosphere.
- To determine asymptotic directions, particle trajectories are numerically traced backward through a model magnetosphere until they cross the magnetopause.
- ★ The calculation also allows to evaluate geomagnetic cutoff rigidities and to separate protons of interplanetary and atmospheric (trapped & albedo particles) origin.

A. Bruno

Geomagnetic back-tracing

- ✤ Based on Smart & Shea (2000, 2005) code
 - o Runge-Kutta integration of motion equations
- Uses the "International Radiation Belt Environment Modeling" (IRBEM) library (Boscher et al. 2012)
- Realistic description of the geomagnetic field:
 - o internal sources: IGRF-11 model
 - o external sources: Tsyganenko models
 - o IMF and Solar Wind parameters:
 - high-resolution (5-min) OMNIWeb data
- ✓ Already used in the analysis of under-cutoff protons (see my presentation: "Geomagnetically trapped and albedo protons measured by PAMELA")

The Tsyganenko models

http://geo.phys.spbu.ru/~tsyganenko/modeling.html

Semi-empirical best-fit representations for the geomagnetic field, including the contributions from external magnetospheric sources:

 ring current, magnetotail current system, magnetopause currents and large-scale system of field-aligned currents.

Latest versions (Tsyganenko & Sitnov, 2005; 2007) provide a <u>dynamical description of the</u> <u>storm-time geomagnetic field</u> in the inner magnetosphere

• based on 5-min resolution OMNIWeb data

In this analysis we used the **TS07D** model (Tsyganenko & Sitnov 2007):

- High-resolution: large (~10⁶ points) dataset based on recent (1995-2005) spacecraft measurements (Cluster, Polar, Geotail, IMP-8, GOES 8-12).
- Coverage: < 30-35 R_E (previous version TS05 is limited to $X_{GSE} \ge -15 R_E$)
- More flexible and strongly superior to all past empirical models in reconstructing distribution of storm-scale currents.

A. Bruno

The December 13, 2006 event

Adriani, O., et al., "*Observations of the 2006 December 13 and 14 Solar Particle Events in the 80 MeV/n - 3 GeV/n Range from Space with the PAMELA Detector*", ApJ 742 102 2011.

A. Bruno

The December 13, 2006 event IMF and SW parameters

Pamela

time interval: 03:11 – 03:37 UT

The December 13, 2006 event PAMELA vertical asymptotic directions

180

160

100

80

60

40

20

0

2

Rigidity [GV]

140 Pitch 120 다

angle [deg]

Evaluated for 18 rigidity values between 0.39 - 2.5 GV

Dec 13, 2006, 03:11:00 - 03:37:00 UT

GSE frame: X = Earth-Sun line, Z = Ecliptic North Pole

A. Bruno

3rd Space Radiation and Plasma Monitoring Workshop

0.4

The December 13, 2006 event proton back-tracing

Dec 13, 2006, 02:25:59 - 03:36:42 UT

GSE frame: X = Earth-Sun line, Z = Ecliptic North Pole

The December 13, 2006 event proton back-tracing: animation

The December 13, 2006 event Helium back-tracing

Dec 13, 2006, 02:25:59 - 03:35:49 UT

Major SEP events under study

2011 June 07 (M2)

2012 January 23(M8)

2012 January 27 (X1)

2012 March 07 (X5)

2012 May 17 (M5)

Major SEP events under study

arbitrary units (preliminary!!!)

Combined back-tracing analysis

- The unique data of PAMELA can be combined with other solar contextual data to form a complete picture of the evolving SEP event and to identify connections, if any, with the low-energy SEP component.
- The highest energy SEPs, the so-called Ground Level Enhancements (GLEs), offer a unique opportunity to study the signatures of acceleration relatively unhindered by the effects of transport.
- The shape and morphology of GLEs can be evaluated through extensive modeling of the response of the world-wide network of Neutron Monitors (NMs) located at widely differing locations and altitudes, in combination with PAMELA data.
 - Each NM provides the particle intensity as a function of time observed at a given geographic location.
 - The back-tracing analysis was applied to 16 NM stations.
 - NM asymptotic directions evaluated in the rigidity range: 0.1÷20 GV

Neutron monitors vertical asymptotic directions

December 13, 2006, 03:00 UT

02:00:00 UT, GEO

Pamela

blue=albedo, red=interplanetary, **★**=Störmer vertical cutoff

10 Rigidity [GV]

A. Bruno

Conclusions

- PAMELA innovative aspects include the possibility of measuring the pitch-angle distribution and, consequently, the extent of particle scattering at high energies.
- In particular, the <u>analysis of the anisotropy</u> of the event prompt phase can put important constraints on particle transport and enable a clearer view of the processes governing acceleration at the Sun.
- A key ingredient is the use of a **back-tracing** code, based on a <u>realistic</u> <u>description of the magnetosphere</u>, in order to reconstruct particle trajectories and identify asymptotic arrival directions.
- Using both ground- and satellite-based detectors, the directional distribution of incoming events can be modeled to determine the omnidirectional density and weighted anisotropy.
- The work is in progress. Next steps include:
 - application of the back-tracing study to all SEPs registered by PAMELA (2006-2014)
 - reconstuction of energetic spectra as a function of time pitch-angle