

The Hot Plasma Environment Monitor (HOPE-M) for telecoms satellites

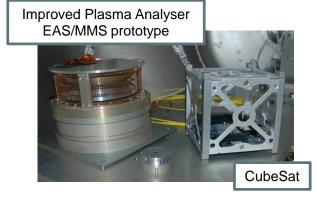
Dhiren Kataria¹, Richard Cole¹, David Rogers², Andrew Fazakerley¹, Phil Ireland³

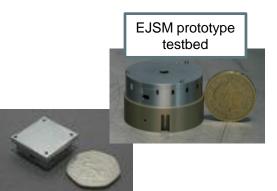
¹Mullard Space Science Laboratory (MSSL), UCL Department of Space and Climate Physics, Holmbury St. Mary, Dorking, Surrey RH5 6NT UK

²European Space Agency, 2200 AG Noordwijk

³SEA, SEA House, Bristol Business Park, Coldharbour Lane, BRISTOL, BS16 1EJ

Space Radiation and Plasma Monitoring Workshop, ESTEC

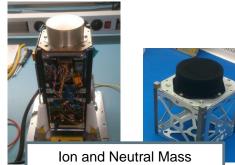



Plan

- Introduction
- Hot Plasma Environment Monitor (HOPE-M)
 - Instrument design
 - Key technology developments
- Some results from ChaPS
- Summary

Instrument Miniaturisation

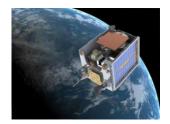
- Aggressive development programme
- Low resource analyser development using MEMS-based (Micro-Electro-Mechanical Systems) fabrication techniques
- Generic technologies suitable for creating highly integrated "matchbox" sized analyser systems: small, low resource, more capable
- Technology demonstration on UK TechDemoSat, Sunjammer and QB50 precursor missions

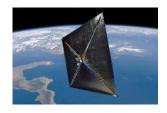


High temporal resolution proof-of-concept analyser

TechDemoSat ChaPS instrument and CAD model

Ion and Neutral Mass Spectrometer for QB50




Silicon wafer analyser

Flight Missions and SSA

- Charged Particle Spectrometer (ChaPS), TechDemoSat – launch 19th June, 2014
- Solar Wind Analyser (SWAN), Sunjammer launch Q1-Q2 2016
- 14 x Ion and Neutral Mass Spectrometer (INMS), QB50 - launch precursor June 2014, main 2016
- UCLSat 2U CubeSat for QB50, launch 2016
- Solar Wind Analyser (SWA) Suite, Solar Orbiter launch 2017

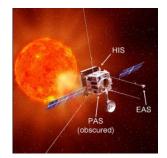
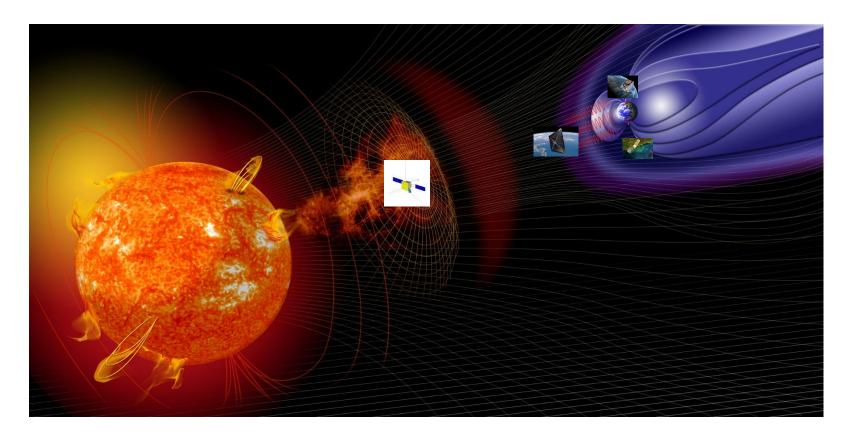
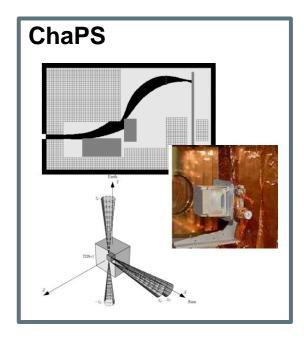



Image credits: NASA, ESA, SSTL, L'Garde

Flight Missions and SSA

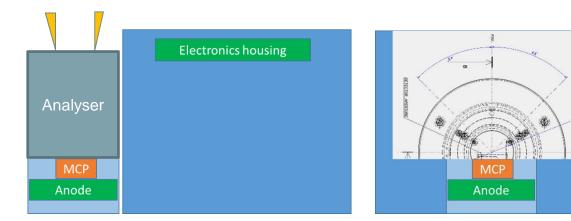
Background Image credit: NASA

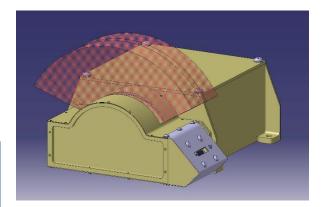
Space Radiation and Plasma Monitoring Workshop, ESTEC


Key technology developments

- Combined Electron-ion Energy Analyser
 - Flexible design, ability to tune performance
- Dual polarity high voltage power supply
- Micro-channel plate detector for simultaneous detection of electrons and ions
- Compact digital electronics
 - Complex capabilities for environment monitoring on telecoms satellites at GEO
- Silicon detector development in parallel

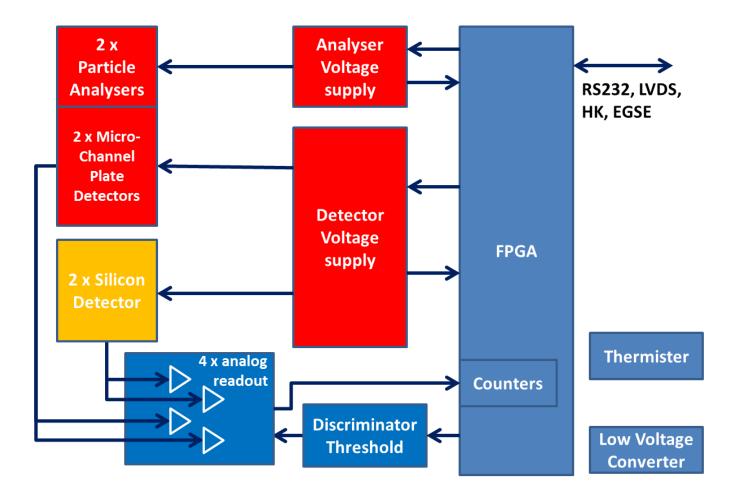
HOPE-M design overview


- Based on ChaPS
 - Delivered for UK TechDemoSat
 - Miniaturised electrostatic analysers
 - Combined electron-ion
 - Variants of the Bessel Box geometry
- HOPE-M design
 - Combined Electron and ion measurements
 - $\pm 22^{\circ} \text{ x} \pm 60^{\circ}$ Field of view
 - Separate detector for higher energies

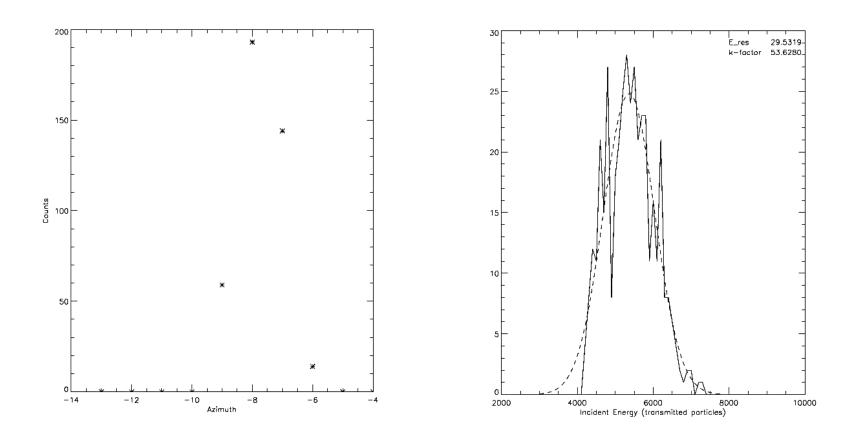


Mechanical Aspects

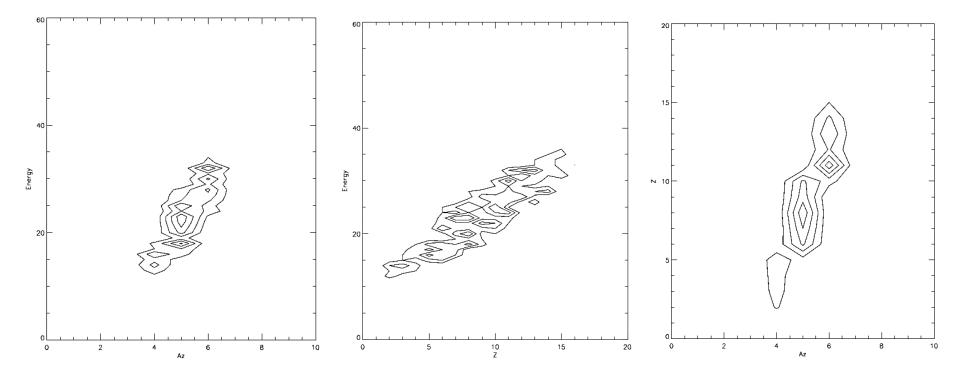
- Modular design analyser head, electronics box
 Taylor design for Science or monitoring,
- Two Bessel boxes
- Single MCP for breadboard
- Four readout channels



Space Radiation and Plasma Monitoring Workshop, ESTEC


System Architecture

Space Radiation and Plasma Monitoring Workshop, ESTEC


Simulation results - 1

Space Radiation and Plasma Monitoring Workshop, ESTEC

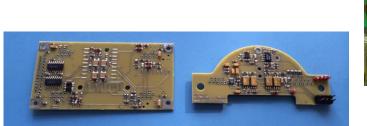
Simulation results - 2

Space Radiation and Plasma Monitoring Workshop, ESTEC

Performance parameters

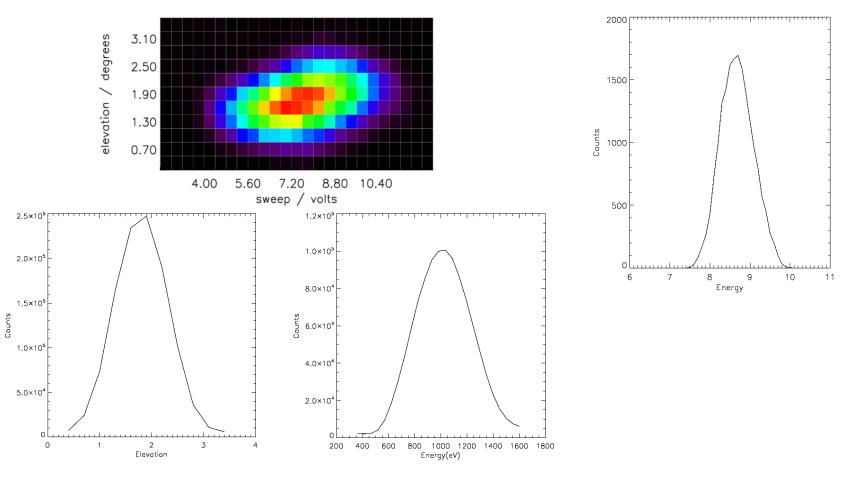
	ChaPS - Magnetosphere	HOPE-M (breadboard)
Primary sampling region	Auroral Electrons at the poles	GEO
Particle Type	Electrons	Electrons, lons
Key View direction	N-S	Earth pointing
PROPERTIES		
Energy range (eV)	10 to 4,000 eV	30 to > 30,000 eV
Energy resolution (%)	< 40	< 30
Elevation acceptance	< 1.8°	± 11°
Azimuth acceptance	< 20°	± 60°
Energy Sweep time	1 s	30s
Energy Sweep steps	64x4	64

Space Radiation and Plasma Monitoring Workshop, ESTEC



Status and ongoing developments

- HV and front end electronics tested on the bench
- Analyser breadboard parts fabricated, integration next week
- Test in LEPIC facility. Provides both electrons and ions in one calibration chamber



Expected results (Data from ChaPS calibration)

Space Radiation and Plasma Monitoring Workshop, ESTEC

Summary

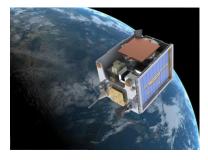
- Strong Heritage
- Aggressive Miniaturisation Programme
- Developments for flight missions
 - Solar Orbiter EAS
 - Approaching CDR. Launch 2017
 - ChaPS
 - Flight Demonstration on TechDemoSat
 - Instrument delivered March 2012, launch 19th June, 2014
 - QB50
 - INMS under development
 - Prototype on precursor, launch 19th June, 2014
 - SWAN for Sunjammer
 - Launch 2016

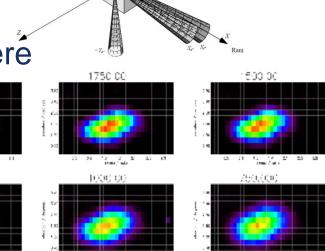
Summary

- HOPE-M for geostationary satellites
 - Combined low resource electron-ion analyser
 - Modular design, ability to tune for science/monitoring
 - Target mass 0.5 kg
- Enabling technology for future missions
 - Generic technologies
 - Silicon wafer fabrication

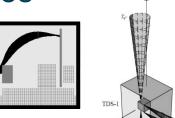
Acknowledgements

- Support of David Rogers, Eamonn Daly (technical officer for SPEAR feasibility study) and Alain Hilgers
- MSSL team
 - In-situ: Gethyn Lewis, Ben Taylor, Andrew Malpuss
 - Science: Andrew Fazakerley
 - Engineering: Mark Hailey, Hubert Hu, Rahil Chaudery, Andullah Khalil, John Coker
 - Workshops: Doug Davies, Gary Davison, Ian Phillips, Simon Hemsley


Space Radiation and Plasma Monitoring Workshop, ESTEC

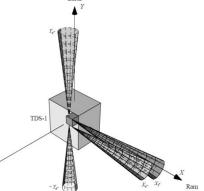

ChaPS – Overview

Dhiren Kataria, Andrew Coates, Hubert Hu, Richard Cole, Mark Hailey, Eric Ueberschaer, MSSL


- ChaPS (Charged Particle Spectrometer)
 - Suite of miniaturised Bessel Boxes
 - Electron and ion analysis
- Three modes
 - Electrons in the auroral regions
 - Electrons and ions in the ionosphere
 - Spacecraft potential
- Delivered March 2012
- Launch Q3-2013

Space Radiation and Plasma Monitoring Workshop, ESTEC

ines / en


Space Radiation and Plasma Monitoring Workshop, ESTEC

ChaPS – Overview

Dhiren Kataria, Andrew Coates, Hubert Hu, Richard Cole, Mark Hailey, Eric Ueberschaer, MSSL

- Demonstration
 - Combined electron-ion analysis
 - Miniaturised geometry
 - Ability to tune performance
 - Various k-factors
 - "Intelligent" FPGA
- Further development for two mission opportunities
 - Addition of neutral particle sensing for QB50
 - Auroral sensor being tuned for Solar Wind ions for Sunjammer

