Institute of Accelerating Systems and Applications University of Athens

Cross-calibration of solar proton detectors

I. Sandberg, I.A. Daglis

Institute of Accelerating Systems and Applications, Greece Department of Physics, University of Athens, Greece

P. Jiggens, P. Nieminen, H. Evans ESA/ESTEC

Implementation of a new calibration for SEP Datasets on SEPEM ESA SEPCALIB Project ESTEC/CONTRACT No.4000104839

Outline

- Motivation
- Chain cross-calibration of "standard" datasets
- Reference dataset: IMP8/GME
- ESA SREM datasets by INTEGRAL (Rosetta, Planck, Herschel)
- NOAA GOES/EPS datasets

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

Motivation & temptation

- Motivation: create a broad cross-calibrated dataset. In radiation environment modelling the timespan is a major issue:
 - > Need a sample as broad as possible
 - > Requires combining different data
 - Use of a common if possible "gold reference" dataset
- Temptation
 - Calibrate U.S. NOAA GOES/EPS dataset; determine EPS energy bands; understand EPS measurements;
 - Verify quality of ESA/SREM fluxes, as derived by a nontrivial unfolding approach of the measurements

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

Overall processing schemes

Interplanetary Monitoring Platform-J NASA Explorer 50 (IMP-8)

Launch Date: 26-10-1973
Official termination: 26-2-2001
Last data received: 7-10-2006
Orbit: Near-circular, 35 Earth Radii, 12-day orbit

IMP8/Goddard Medium Energy Experiment

The highest quality long- term solar proton flux measurements available

NASA Principal Investigator: Dr. Robert E. McGuire

LED failure II

Sorted values of concurrent measurements

LED failure III

Histograms: after & before 04/84

(IASA

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

Cesa

Correct LED data after April 1984

Inter-calibrate LED after the failure onset using:

- the LED data before the onset
- the MED lowest energy channel as a intermediary channel

IMP8/GME/LED inter-calibration

Non-linear inter-calibration function

IMP8/GME/LED inter-calibration

IMP8/GME/LED inter-calibration

(IASA

GOES/EPS data

NOAA GOES measurements:

- Serve as basis for real-time alerts and warnings of hazardous environmental conditions by many operators;
- Provide long-term database of environmental conditions;
- Are distributed in real-time to various Space Weather Services
- Are used to produce the "Solar Radiation Storm" NOAA Scale

Channel	EPS-2
name	E_{nom} [MeV]
$\mathbf{P2}$	6.0 [4.0 - 9.0]
$\mathbf{P3}$	11.6 [9.0-15.0]
$\mathbf{P4}$	24.5 [15-40.0]
$\mathbf{P5}$	56.6 [40-80]
$\mathbf{P6}$	115 [80–165]
$\mathbf{P7}$	287 [165 - 500]

Have wide energy bins!

Radiation and Plasma Monitoring Workshop

ESTEC 13-14 May 2014

GOES/EPS/P2-7 calibration

Determine the energy ranges of the proton flux particles measured by GOES/EPS (according to data) (not the fluxes measured by given energy channels)

- Re-bin IMP8/GME over an ultra dense grid within an energy range: E=15-400 MeV
- Fit GOES channels measurements with the re-binned IM8/GME data $Y_{GOES} = A_{fit}(E) + B_{fit}(E)$
- Evaluate the behavior of the fit coefficients along the energy grid using f.ex.: $\delta B_{fit}(E) = |(B_{fit}(E) - 1)|$ $C_{fit}(E) = \sqrt{A_{fit}(E)^2 + \delta B_{fit}(E)^2}$

RADECS 2013, Oxford

GOES08/EPS-2 spectrum

ESTEC 13-14 May 2014

Energy range of GOES-8/EPS/P7

		CODC O	
Channel	EPS-2	GOES-8	
name	E_{nom} [MeV]	E_{eff} [MeV]	
$\mathbf{P2}$	6.0 [4.0 - 9.0]	6.05 [4.0-7.9]	
$\mathbf{P3}$	11.6 [9.0-15.0]	$10.6 \ [7.4-15.0]$	
$\mathbf{P4}$	24.5 [15-40.0]	19.0 [13.3-21.3]	
$\mathbf{P5}$	56.6 [40-80]	47.8 [37.0-53.6]	
$\mathbf{P6}$	$115 \ [80-165]$	107. [91.5–113]	
$\mathbf{P7}$	287 [165-500]	153. [119–179]	

Table 3.15 Summary of EPS/HEPAD Channel Response Factors						
Channel	Particle Energy (MeV)	GE ₀ (cm ² sr MeV)	Particle Energy Range (MeV)			
P2	6.5	0.252	4.2 - 8.7			
РЗ	11.6	0.325	8.7 - 14.5			
P4	30.6	5.21	15 - 40			
P5	63.1	14.5	38 - 82			
P6	165.	129.	84 - 200			
P7	433.	839.	110 - 900			

Sellers & Hansen, SPIE 2812/353, (1996)

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

ESA Standard Radiation Environment Monitor

- Charged particle detector based on three solid state *Si* crystals
- Detects high-energy charged particles: $e^- E_e > 1$ MeV, $p^+: E_p > 10$ MeV
- Monitors spacecraft radiation environment
- Provides functions related to space weather hazards for the host spacecraft and its payload
- Provides data associated to various physical processes.

ESA SREM

TC1 S12 S13 S14 S15

> TC3 S32 S33 S34

> > 1C

SREM	Proton Energy	[MeV]	Electron Energy	[MeV]
Bin	E_{min}	E_{max}	E_{min}	E_{max}
TC1	27	∞	2.00	∞
S12	26	∞	2.08	∞
S13	27	∞	2.23	∞
S14	24	542	3.20	∞
S15	23	434	8.18	∞
TC2	49	∞	2.80	∞
S25	48	270	-	-
C1	43	86	-	-
C2	52	278	-	-
C3	76	450	-	-
C4	164	∞	8.10	∞
TC3	12	∞	0.80	∞
S32	12	∞	0.75	∞
S33	12	∞	1.05	∞
S34	12	∞	2.08	∞

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

SREM counts-to-fluxes

Sandberg et al, IEEE TNS 59, 1105 (2012)

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

INTEGRAL/IREM vs calibrated GOES

Radiation and Plasma Monitoring Workshop ESTEC 13-14 May 2014

A typical profile

Conclusions

- A series of cross-calibration studies for solar proton monitors have been presented
- A non-linear inter-calibration function for the gold reference "IMP8/GME/LED" dataset was derived
- The energy range values of the GOES/EPS channels were determined through a new calibration scheme
- The SVD-derived SREM fluxes are in very good agreement with GME calibrated GOES/EPS data
- Opportunities for calibrating proton detectors with IMP8/GME through GOES/EPS
- Calibrated datasets and calibration tools will be integrated in SEPEM

FORecasting Solar Particle Events and Flares

A. Anastasiadis, I. Sandberg, A. Papaioannou, M. Georgoulis, G. Tsiropoula, K. Tziotziou, T. Katsiyannis Improvement of Solar Particle Events and Flare Prediction

ESA Contract No. 4000109641/13/NL/AK

