Energetic Particle Telescope (EPT) Data Exploitation

Petteri Nieminen

Space Environments and Effects Section European Space Agency ESTEC

QinetiQ

Busoc

Credits to the EPT team:

- UCL/ CSR (Mathias Cyamukungu, Sylvie Benck, Stanislav Borisov, Ghislain Grégoire, Joseph Lemaire)
- QinetiQ Space (Bart Desoete, Christophe Semaille)
- BISA (Viviane Pierrard, Emil van Rensbeeck, Jeroen Maes, Sabrina Bonnewijn)
- ASRO (Eino Valtonen, Risto Punkkinen)
- B.USOC (Anuschka Helderweirt)
- ESA (Hugh Evans, Alessandra Menicucci, Giovanni Santin, Karim-Mellab)

The state of the

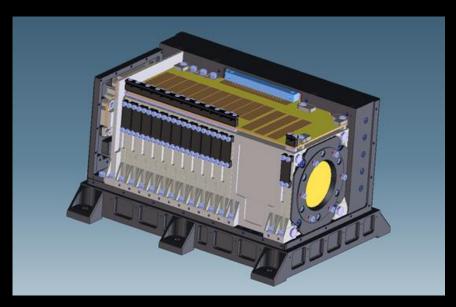
ESA UNCLASSIFIED - Releasable to the Public

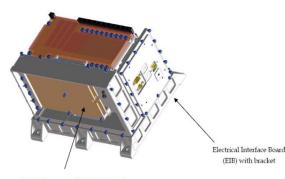
Introduction

- EPT top-level requirements
- EPT concept and design
- Proba-V flight & commissioning first results
- Ongoing data analysis activities under PRODEX
- Outlook
- Further information

EPT top-level requirements

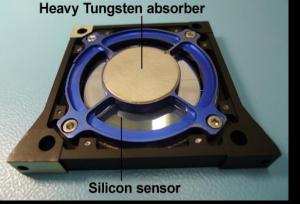
- Electrons
 0.5 20 MeV
- Protons
 9 300 MeV
- Alpha particles 36 MeV 1.2 GeV
- Heavier ions collected in one channel
- Flux max 10⁷ particles/cm2/s
- Integration time 0.1 10 seconds
- Geant4 efficiency matrices used to derive virtual energy channels (from 152 physical channels):


Energy channels	Electrons (MeV)	Protons (MeV)	Helium ions (MeV)
1	0.5-0.6	9.5-13	38-51
2	0.6-0.7	13-29	51-116
3	0.7-0.8	29-61	116-245
4	0.8-1.	61-92	245-365
5	1 - 3	92-126	365-500
6	3-20	126-155	500-615
7		155-182	615-720
8		182-205	720-815
9		205-227	815-900
10		227-248	900-980
11		248-300	980-1600


ESA UNCLASSIFIED – Releasable to the Public

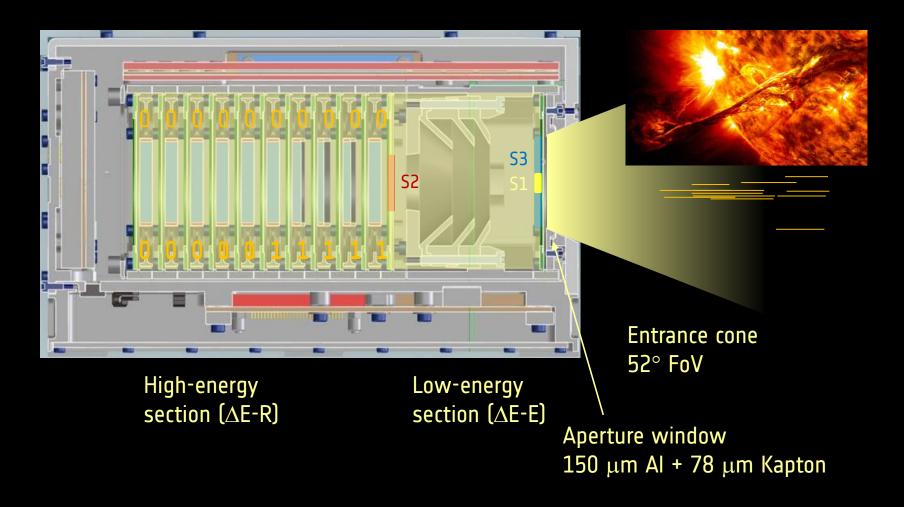
EPT Concept and Design: Main characteristics

- Proba-V EPT total mass 4.6 kg
- Dimensions 210 x 162 x 128 cm³
- Power ~ 6 W
- Interface RS422
- Compact design
- DAM concept: High modularity
- Nominal time resolution 2 seconds



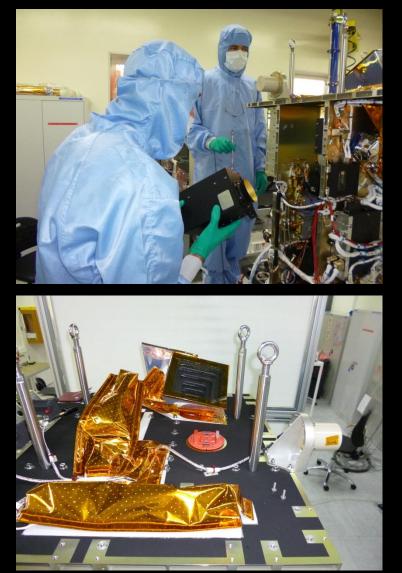
Digital Processing Unit (DPU) board

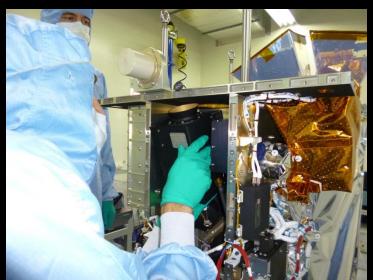
ESA UNCLASSIFIED - Releasable to the Public


Space Radiation and Plasma Monitoring Workshop, 13-14.5.2014

European Space Agency

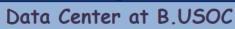
EPT Concept and Design: Sensor system




European Space Agency

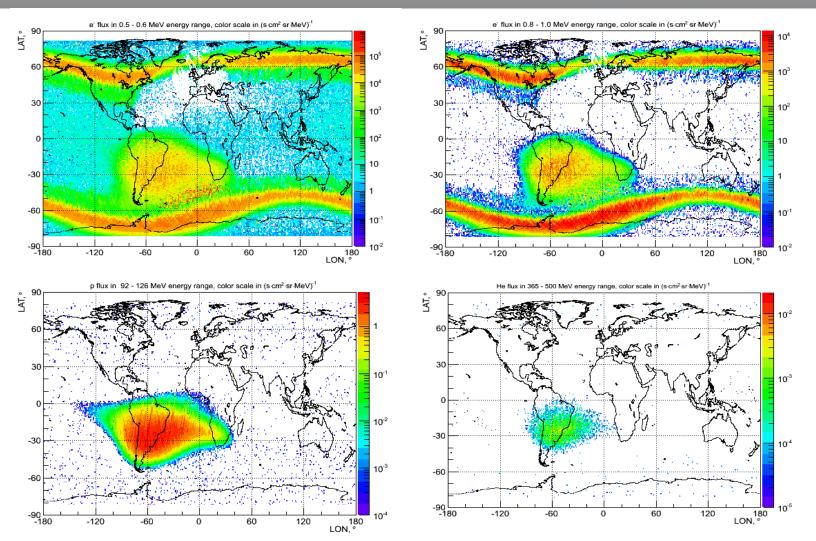
EPT on Proba-V

ESA UNCLASSIFIED – Releasable to the Public



EPT ground segment data flow

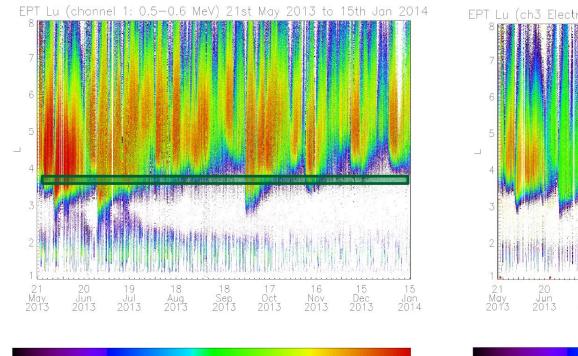
- Data acquisition (TM at S-band pass)
- Extraction of the EPT data set
- EPT Configuration uploading (TC at S-band pass)

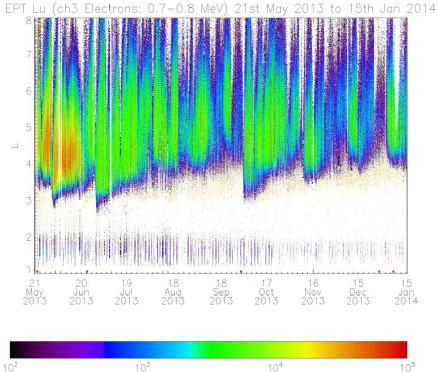

- Downloading of binary EPT and Ephemeris Data
- Decommutation
- Validation through remote desktop (by CSR)
- EPT Configuration management (by CSR)
- Export of EPT data to the Data Center at CSR

Data Center at CSR

- Recording of LO level EPT data
- Conversion to L1 level (particle fluxes, geophysical parameters)
- Data distribution to the users
- Space weather services and radiation environment model

EPT first results 29 May – 20 August 2013

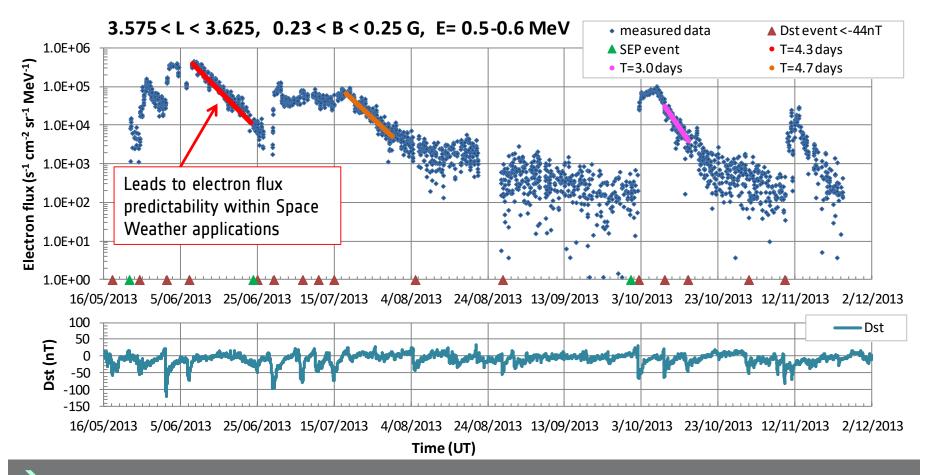



ESA UNCLASSIFIED – Releasable to the Public

Temporal variability: Electrons

 10^{4}

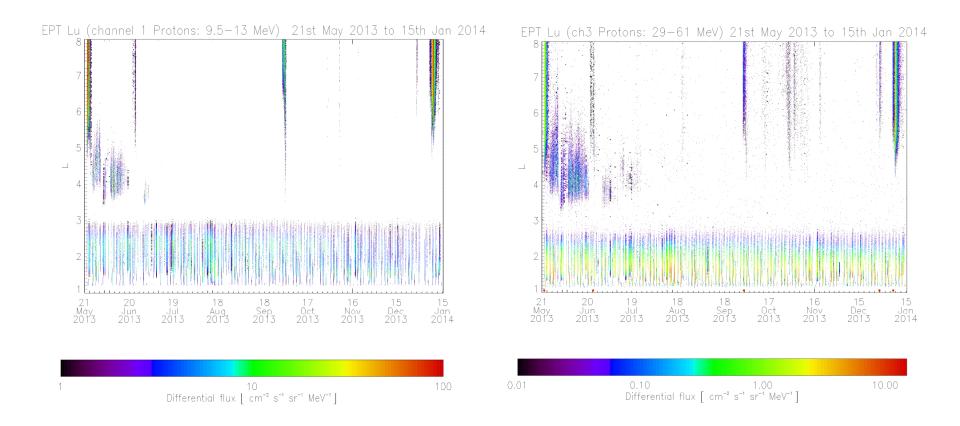
Differential flux [cm⁻² s⁻¹ sr⁻¹ MeV⁻¹]


 10^{3}

Differential flux [cm⁻² s⁻¹ sr⁻¹ MeV⁻¹]

105

Temporal variability: Electrons

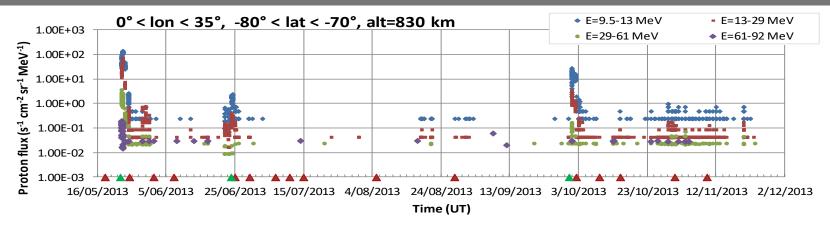


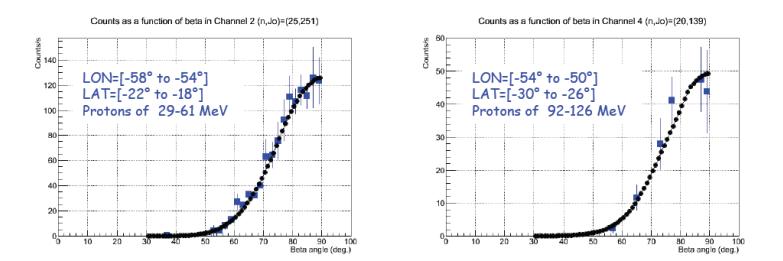
Determination of flux decay time values; to be compared to previous results i.e. Benck et al., Low altitude energetic electron lifetimes after enhanced magnetic activity as deduced from SAC-C and DEMETER data, Ann. Geophys., 28, 849–859, 2010 L=3.6-3.8, B=0.22-0.46 G, E=0.52-0.61 MeV, T=4.9±1.1 days

ESA UNCLASSIFIED - Releasable to the Public

Temporal variability: Protons

ESA UNCLASSIFIED - Releasable to the Public


Temporal variability: Protons



-22° < lon < -20°, -45° < lat < -43°, alt=830 km -22° < lon < -20°, -45° < lat < -43°, alt=830 km -E=9.5-13 MeV E=29-61 MeV E=29-61 MeV E=29-61 MeV E=29-61 MeV E=61-92 MeV E=61-92

→ In the SAA the proton fluxes are quite stable

At high latitude protons appear during SEP events.

- Off-pointing measurement campaign from June 25th to December 10th 2013
- Proba-V rotation northwards from its nominal attitude before flight in the SAA
- Rotation angles from 0° to 45° to cover pitch angles from 30° to 90°

6

Outlook

- Study the flux variations during SPEs and geomagnetic storms
- Study the precipitation fluxes and their effects on the atmosphere
- Study the South Atlantic Anomaly and polar horns evolution
- Study the source and loss mechanisms
- Fit the spectra to obtain the density-energy distribution
- Compare with Van Allen Probe and CLUSTER observations at other orbits
- Support radiation monitor observations and cross-calibration
- Contribute to radiation environment model improvements
- Provide a quick-look Space Weather facility
- Local Proba-V comparisons between EPT and SATRAM

More information & acknowledgements

- http://csrsrv1.fynu.ucl.ac.be/csr_web/ept/eptinfos.php
- <u>http://ept.aeronomie.be/en/index.htm</u>
- http://www.qinetiq.com/services-products/space/Pages/satellite-payloads-ept.aspx
- http://www.busoc.be/projects/ept/
- <u>http://space-env.esa.int/index.php/ESA-ESTEC-Space-Environment-TEC-</u> <u>EES/articles/EPT_first_results.html</u>
- http://www.esa.int/Our_Activities/Technology/Proba_Missions/Overview2

EPT PI: *Mathias Cyamukungu (Mathias.Cyamukungu@uclouvain.be)*

EPT Phase A/B/C/D development was funded under ESA GSTP contracts 20294/06/NL/JD and 4200022582

EPT Data Exploitation project is funded under ESA PRODEX arrangement 4000107617