Key learnings when applying an iterative LCA approach during the different development phases of a space mission

CSID 2023

An Vercalsteren (VITO), Stefanie De Smet (VITO), Andrea Calio (OHB)

LCA following space mission development phases

- Iterative approach is recommended
- From screening to more detailed LCA
 - Goal and scope
 - Data collection
 - Specific data
 - Data gaps and proxies
 - Data Quality Rating and Requirements
- Illustrated by learnings from CO2M mission

LCA following space mission development phases

Goal and scope

- Tailoring of system boundaries in specific context is required
- Functional unit: "Definition, production, testing and spacecraft-related launch activities of the space segment of the CO2M mission"
 - Deviation from the ESA Space system LCA guidelines: scope is limited to phases B2, C, D and part of E1, excluding the launch and ground segment

Data Quality Requirements:

- ESA currently requires data quality to be determined according to the method based on the Environmental Footprint (EF) initiative
- Alternative quality ranking approach might be more feasible to be applied in first iterations

Life Cycle Inventory

- A/B Office work
- Production and testing of platform components
- Production and testing of payload instruments
- Production of GSE
- AIT
 - Cleanroom work
 - Testing
- C/D Office and cleanroom work
- E1 Fueling and storage

Office and cleanroom work

Useful to update impact per manhour for each mission?

Phase A/B		Phase C/D	
Specific data:So• # manhours suppliersLS• # manhours LSIco• # manhours ESA??Estimate for ratio office/cleanroom	ource SI contracts ontract ??	 Specific data: # manhours suppliers # manhours LSI office # manhours LSI cleanroom # manhours ESA Impact per office hour Impact per cleanroom hour 	Source questionnaire detailed estimate of departments LSI (measurements and sustainability reporting)
 Proxy: Impact per office hour Impact per cleanroom hour <i>wit</i> 	SA database ased on previous projects), th country-specific E-mix	 Proxy: Ratio office/cleanroom suppliers Impact per office/cleanroom hour suppliers 	LSI data LSI data with country-specific E-mix

Comparison of old proxy with LSI data for 1h office work* 1m² use of

60% 80% 100% Climate change Ozone depletion potential Human toxicity potential, cancer Human toxicity potential, non-cancer Photochemical ozone formation potential Particular matter formation potential Freshwater eutrophication potential Marine eutrophication potential Metal resources depletion potential lonising radiation potential Freshwater ecotoxicity potential Marine aquatic ecotoxicity potential Fossil resources depletion potential Mineral resources depletion potential Air acidification potential Primary energy consumption potential Gross water consumption potential

Office manhour It1 office manhour It2

1m² use of cleanroom*

Cleanroom It1 Cleanroom It 2

Production and testing of platform

Phase A/B

Specific data:

from DML, DPL, LSI questionnaire

- Mass budget platform and subsystems (incl margins and test models)
- Mass ranges for equipment
- Qualitative info for manufacturing processes

Estimate for suppliers' location

Proxy:

from ESA database

- Equipment model approximated with materials/components
- For some manufacturing processes

Data gap:

Testing on equipment level

Specific data: *from detailed DML, suppliers' questionnaire, internal LSI investigations (MAIT department), energy provider*

- More specific mass budget
- · Suppliers' location
- Equipment test (incl. cleanroom) for one electronic unit (OBC)

Proxy:

Phase C

- Improved background data for manufacturing of some equipment (e.g. electronic boards)
- Proxy for some manufacturing processes
- Equipment tests for E-units approximated by OBC data

Data gap:

- Limited data for few manufacturing processes where most impact is assumed (E-use, waste)
 → challenge!
- Phase D: If LCA iteration 2 would bring the need to investigate more in depth some **vito.be** hotspots \rightarrow additional data collection

Include requirement for data collection in suppliers' contract?
 → In return: LCA profile?

- Update/elaborate of ESA DB with better background data?
- Point of attention:
 - Data for **equipment manufacturing** processes! (mechanical vs electronic products)
 - Data for equipment testing

Production and testing of platform

- Production of on-board computer, based on:
 - Material breakdown from DML (Iteration 1)
 - Using an elaborate electronic proxy (rPBA)

Iteration 1 Using Proxy

vito.be

Production and testing of platform

- Production of on-board computer, based on:
 - Material breakdown from DML (Iteration 1)
 - Using an elaborate electronic proxy (rPBA)
- Testing of equipment has an important impact

Total effect on missions' impact

B2 office work

 C/D Production and transport of platform components (excluding test models)

C/D Production and transport of payload (including test models)

C/D Production of GSE

C/D office work

C/D Assembly, Integration and Testing

E1 Fuelling (incl. pre- and post-work)

- Using specific data for office hours and cleanroom consumption
- Using elaborate proxy for all electronic equipment
- Testing of electronic equipment not included in this graph!
- Data for payload, GSE, AIT and E1 unchanged between iteration 1 and 2
- ➔ Overall impacts are decreased
- Office work has decreased drastically (was a hot-spot in It 1)
- → Impact of GSE \approx Satellite

vito.be

Production and testing of payload

Less heritage, so difficult to reuse information from other missions or from DB.

Phase A/B		Phase C				
 Specific data: Rough mass bu margins and tes 	<i>No DML/DPL available</i> dget for instruments including t models	Specific data: • More specifi	from DML/DPL, questionnaire			
 Proxy: Instruments model components Proxy for some 	from ESA database delled with materials and manufacturing processes	 Proxy: from ESA database Instruments modelled with materials and components 				
Data gaps:Manufacturing pTesting	processes	Data gaps: Manufacturing 	ng processes			

vito.be

Production of GSE

Phase A/B

No specific data available

Estimates

 for mass, based on type of GSE and previous studies

Assumption:

- If known: allocation over # missions
- For other: no reuse or recycling of GSE

Proxy:

GSE modelled with materials available in ESA DB/

Phase C

•What happens with GSE at **end of phase D**? (reuse, storage, recycle, ...)

•How to **allocate** over # missions?

•Relevant! → Impact of GSE is comparable to impact of satellite!

Specific data: suppliers' documentation: technical descriptions, mass budgets/BoM, drawings

More specific mass budget

Proxy:

from ESA database

Equipment modelled with materials and components

Assembly, integration and testing

AIT test data (vibration, TVAC, acoustic) are available in ESA DB (per unit of time)

 What about unit/subsystem and platform tests? → useful to develop comparable records

Specific data:

Phase A/B

LSI

- Occupation of cleanroom (time, area)
- Transport (if relevant)

Proxy:

ESA database

- Energy use of cleanroom
- # manhours (see before)

Data gaps:

 Energy and auxiliary consumption of tests during test campaign

Specific data: LSI: MAIT plans and internal investigation; energy provider; ESA

Phase C

- Energy and auxiliary use of tests on unit/subsystem, platform and satellite level
- Duration (preparation and runs) of tests
- Energy use of cleanroom (specific for LSI resp. ESA)
- # manhours and impact of office resp. cleanroom hour

Data Quality Rating and Requirements

- Relevance of DQR during iterative approach
 - To steer data collection and focus on where it matters most
 - e.g. for CO2M: manhours, electronic units, manufacturing processes (?), AIT

Balance effort versus gain

- Iteration 1:
 - No DQR according to 'pedigree matrix'
 - Color coding on data availability matrix to identify data gaps and weak data
- Iteration 2 and 3:
 - DQR according to 'pedigree matrix'
 - Minimum requirements set by ESA

Overview	- Configuration Item Number	Material	Transportation	Manufacturing process		Source & Data Quality	
PLATFORM	111.00.00.00						Models
Electrical and Power Subsystem	111.01.00.00				Source	Materials	Manufacturing processes
Battery Unit	111.01.01.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Power Conditioning and Distribution Unit	111.01.02.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Solar Array	111.01.03.00	Available	Available	Available	DML&DPL from Another Project	Masses estimated	none
Solar Array Drive Assembly	111.01.04.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
Payload Power Distribution Unit	111.01.05.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Data Handling Subsystem	111.02.00.00						
On-Board Computer	111.02.01.00	Available	Available, including for each material	Available	Direct Info from Supplier	Exact masses	readily available manufacturing processes
Remote Terminal Unit 1	111.02.03.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
Remote Terminal Unit 2	111.02.04.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
Remote Terminal Unit 3	111.02.05.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
Payload Data Handling Unit	111.02.06.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Telemetry, Tracking and Command Subsystem	111.03.00.00						
S-band Antenna (Hemi)	111.03.01.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
S-band Transponder	111.03.02.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
S-band TT&C RFDN	111.03.03.00						
S-Band 3 dB Hybrid Coupler	111.03.03.01	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
S-Band Coax Cables	111.03.03.02	Not Available	Available	Not Available	Modelled using Proxy	Masses estimated	none
Attitude and Orbit Control Subsystem	111.04.00.00						
Star Tracker Sensor	111.04.01.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
GNSS Receiver (including antenna)	111.04.03.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Coarse Sun Sensor	111.04.04.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Magnetometer	111.04.05.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Reaction Wheel and ext. Electronics	111.04.05.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Magnet Torquer	111.04.07.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Reaction Control Subsystem	111.06.00.00						
Propellant Tank	111.06.01.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
20N Thruster	111.06.02.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	none
Ball Latch Valve	111.06.03.00	Available	Available	Available	CO2M DML&DPL	Masses ranges	readily available manufacturing processes
Pressure Transducer	111.06.04.00	Not Available	Available	Not Available	Modelled using Proxy	Masses estimated	none
Fill and Drain Valve	111.06.05.00	Not Available	Available	Not Available	Modelled using Proxy	Masses estimated	none

How to focus data collection and modelling improvement?

Based on:

- Hot spots identified in previous iteration
 - !!! Risk: this depends on how good or bad proxies are
 - E.g. manhour impacts
- DQR results → missing or weak data (completeness)
 - E.g. electronics
- Complemented with expert judgement

\rightarrow Added value of questionnaire?

- Can we start in 1st iteration with available DML and DPL info?
- When is best time to send this questionnaire, and which focus?
- How to overcome the limited data availability of equipment manufacturing processes?
 - Only ask for data about energy use, materials use and waste?
 - To think about: ask for data on company-level (from reporting) and define allocation rules for allocating these to product level

\rightarrow Which data become available during space mission development phases?

Lessons learned – Guidance & support of ESA

- LCA studies in space context are supported by guidance documents and database developed by ESA → Need to continuously update and elaborate
- Performing a LCA is a valuable assessment to understand the environmental hotspots of the satellite development and manufacturing.

- Keep in mind the objective of the LCA-work during development phases
 - For ecodesign
 - For 'green claims'
 - For elaborating ESA database
 - ...

Lessons learned – Guidance & support of ESA

- ESA space system LCA guidelines (ESA LCA Handbook):
 - Tailor/distinguish guidelines in ESA Handbook specific for G&S and LCI to
 - Development phase of space mission (A, B1/2, C/D)
 - System level, subsystem level, component level, ...
 - Objective of the LCA
 - Clear guidance required for DQR (requirements and method) distinguishing space mission development phases
 - How to deal with **missing data** → proxies?
 - Data collection: how to set focus and priorities, how and when to involve suppliers?

While integrating environmental considerations at an early stage of the design process is key

Lessons learned – Guidance & support of ESA

LCA Data questionnaire :

- Harmonization of questionnaire is important
- Helpful for prime, but still data and time intensive for suppliers → prioritization is needed
- Link with DML and DPL
- When is best 'time' to use questionnaire \rightarrow phase B2 or C?

ESA Database:

- Supports for some equipment, but not for all
- Lacks (default) data for tests on different levels (equipment, unit/subsystem, platform, satellite), manhours, manufacturing processes, infrastructure
 - \rightarrow this is exactly type of (background) data which is difficult/impossible to collect
- Should be considered as a proxy that matches DQR if no detailed supplier data are available

Contacts

An Vercalsteren (VITO) An.vercalsteren@vito.be

Stefanie De Smet (VITO) <u>Stefanie.desmet@vito.be</u>

Andrea Calio (OHB) Andrea.Calio@ohb.de

