

Update on the implementation of LCA and ecodesign in the development of a semi-reusable minilauncher

Loïs Miraux, environmental and cost engineer

2023 ESA Clean Space Industry Days 18/10/2023

Past participations and today's agenda

2021 Edition (ArianeWorks)

Preliminary LCA Ecodesign vision

2022 Edition

Draft of sustainability strategy Methodology (reusability, ecodesign) Preliminary analysis of impact mitigation levers and their potentials Analysis of the environmental benefits/drawbacks of reusability

2023 Edition -

<u>Agenda</u>

- 1. Sustainability strategy and state of progress
- 2. Updated LCA
- 3. Methodological developments: focus on the derivation of GWP coefficients for launch
- 4. Ecodesign: methodology and tools, process, difficulties, first use case

MaiaSpace's space transportation solutions

Reusable, eco-designed and dual-performance launcher

500kg SSO 500km (RLV) - 1500kg SSO 700km (ELV)

Regenerative in-orbit services

Last miles delivery, Debris Removal...

To fulfill its targets and vision, MaiaSpace has set a sustainability strategy based on 4 axes

Managing our environmental performance	Sustainability since day 1	Estimation of our in	Estimation of our impacts		Today's focus
Managing our vulnerability to global systemic risks	Climate re	y silience C	ritical raw material	S	
Contributing to sustainability through our activities	Develop IOS/A	DR services	Launch satellites	S	
Contribute to wider space sustainability effort	Involvment in conferences and workshops	Disseminate met and findings	hods Ethio	B cal communication	

Lifecycle phases of MaiaSpace's launch service

Research & Development

Manufacturing, Assembly, Integration and Test (MAIT)

Launch Campaign **Propellant production**

Results over one year of operations

(at full operational capability)

Current knowledge gaps on the launch phase

Final emissions

Impacts on instantaneous radiative forcing, ozone destruction, atmospheric circulation,... f(altitude, time of day, meteo,...)

Long terms consequences on the troposphere translated in conventional metrics (GWP, ODP) → NO DATA

Primary emissions

Plume/atmosphere interaction f(altitude, time of day, meteo,...)

Necessity of comparing the impacts of launch VS the rest

Which one is best?

Ecodesign on the launcher is impossible without the answer

Available Global Warming Potential (GWP) coefficients

Ground-based and aviation-based climate change characterization factors (GWP100) as a function of altitude + filled with in-house methodology

	Altitude (km)	ВС	Al2O3	Н2О	NOx
Lower troposphere	0-5	460	1.23	~0	8.5
Upper troposphere	5-15	1166	? -> 1.23	0.06	114
Stratosphere	15-50	310906	60156	854	? -> 114
Mesosphere	50-85	310906	60156	854	? -> 114
Space	>85	0	0	0	0

Lifecycle GWP100 is significantly smaller than launch GWP100-like

Issues to manage a much larger effect and uncertainty

■ Lifecycle emissions w/o launch & re-entry ■ Launch BC ■ Launch H2O

Precautionary principle: prevent the increase of atmospheric emissions?

Minimizing atmospheric emissions = N°1 mitigation strategy → The case for performance optimization?

Example: Colibri's structure trade-off

					Order of magnitudes
Methodology	Rankings				$\Delta CC_{41} = CC(4) - CC(1)$ Measures the "stake" of the tradeoff for CC
Direct impact only over 1 year	A B C D (fictitious)	CC 4 3 2 1	RD 4 3 2 1	Mass 3 1 2 4	$\Delta CC_{41} \approx 6\% \ of \ total \ MAIT/yr$
Impact including variation of launcher's performance 1kg gained in Colibri → 1kg gained on payload No effect on filling rate	A B C D	CC 3 2 1 4	RP 1 4	Although D is much better initially, it performs worse due to higher mass 2kg of additional mass of D is enough to erase its CC benefits!	$\Delta CC_{41} \approx 100\% \ of \ total \ MAIT/yr$
Impact including variation of launcher's performance AND launch phase with high-altitude effects	A B C D	CC 3 1 2 4	RD 3 1 2 4	0.1kg of additional mass of D is enough to erase its CC benefits!	$\Delta CC_{41} \approx 4500\% \ of \ total \ MAIT/yr$

4

MaiaSpace's methodology objective

Tackle 3 issues not currently addressed by existing methodologies

→ Provide a methodological brick to the standardization effort (ESA Handbook, EC PEF)

Ecodesign tools

Mapping material and energy fluxes: a 1st step for understanding vulnerability to systemic risks

Key takeaways

MaiaSpace has made progress towards its sustainability objectives

- Methodological efforts conducted and disseminated
- LCA model updated
- First ecodesign cases (in addition to good early overarching design choices)
- Good feedback from potential customers and partners
- Many challenges must still be overcome

However, ecodesign on the launcher itself is currently not robust due to knowledge gaps on the launch

phase

- Methodology to derive GWP100-like proposed
- Suggests that performance optimization reduces atmospheric impacts /kg payload
- PhD project initiated and co-funded on LOX/LCH4 emissions

"Sustainability" is not limited to LCA/ecodesign: first discussions on climate resilience and supply chain vulnerability initiated.

Contact info:

Loïs Miraux bis.miraux@maia-space.con

Backup

Environmental indicators

Target setting: based on feasibility analysis

Fictitious, illustrative purpose only

Infrastructures ■ MRO Recovery Launch campaign Propellants production and fuelling Transatlantic logistic MAIT Colibri MAIT Upper part MAIT US MAIT Recovery kit MAIT Inter-stage skirt MAIT LS MAIT Prometheus

The effect of particles

Black carbon residence time: Troposphere : a few days Stratosphere : a few years

→ Rocket BC 500x more efficient at warming than other sources of BC

Warming of the stratosphere

Complexes changes resulting in areas of warming and of cooling

Source: Miraux, 2021 adapted from Ross & Vedda, 2018

 $GWP_{i}(H) = \frac{AGWP_{i}(H)}{AGWP_{CO_{i}}(H)}$

"GWP-like" calculation procedure for high-altitude effects

No indirect effects in GWP metric, expected to be significant 🔺

- Emissions profile available
- Computation of radiative efficiencies from literature

Radiative efficiency Ai (mW/m2/t strato)

	Ryan et al.	Ross & Sheaffer	Selected value
BC	8.72E-03	2.74E-02	8.72E-03
Al2O3		1.69E-03	1.69E-03
H2O	-2.40E-05	4.29E-05	-2.40E-05

- Assumption of exponential decay, with e-folding time from literature
- Calculation of absolute GWP at horizon H
- Ratio with AGWP(CO2) at horizon H ——> Comparing relaxed tropospheric RF to instantaneous TOA A

Based on instantaneous RF 🛕

zon H AGWP_i(H) =
$$\int_0^H RF_i(t) dt = A_i \tau \left(1 - \exp\left(-\frac{H}{\tau}\right)\right)$$

$$RF_i = A_i R_i$$

ature
$$R_i(t) = \exp\left(-\frac{1}{2}\right)$$

"GWP-like" results for high-altitude effects

Climate change characterization factors (GWP100 and GWP100like) as a function of altitude

	Altitude (km)	BC	AI2O3	H2O	NOx
Lower troposphere	0-5	460	1.23	~0	8.5
Upper troposphere	5-15	1166	? -> 1.23	0.06	114
Stratosphere	15-50	310906	60156	854	? -> 114
Mesosphere	50-85	310906	60156	854	? -> 114
Space	>85	0	0	0	0

Trade-off mass/cost/environmental impacts

Eco-design levers implemented and planned by MaiaSpace

Effectiveness

TRL reached by MaiaSpace

Comparaison service ELV/RLV VS full ELV

-10 à -25% sur les ressources +0 à +5% sur le climat A consolider !

Lower production needs Common means

MaiaSpace's ELV/RLV mix

Two expendable launchers (same technology than MaiaSpace)

Semi-reusable RLV vs expendable-only

Additional value brought by reusability not valued in FU

New hardware production avoided

+

Decreased transport requirements

CONFIDENTIAL

Degraded payload capacity → Larger launcher, more propellants

Recovery kit to produce

Crash probability at recovery

Recovery operations and refurbishment

Increased atmospheric emissions / ton of payload

*Semi-reusable RLV ecodesign levers not activated Worst case scenario 26

2023 ESA Clean Space Industry Days

Preliminary results on environmental criteria* Worse on climate change (+5 to 20%) Better on resource depletion (-5 to 30%)

Methodology for tradeoffs affecting vehicle performance

2 3 **Decreased structural mass Decreased propellant mass** Increased payload mass **Decreased distance** New landing Old landing Launch pad point point

CONFIDENTIAL