

Comparison of the Environmental Impact of Production and Launch Emissions of Different Common Launcher Architectures

<u>J.-S. Fischer</u>, S. Fasoulas, C. Brun-Buisson, Dr. E. del Olmo Clean Space Industry Days 2023, Noordwijk 17th October 2023

.

Supported by:

on the basis of a decision by the German Bundestag

Federal Ministry for Economic Affairs

and Climate Action

Motivation

How can we make space flight sustainable?

Fig. 1: Historical and expected future space launches into orbit

4

Life Cycle Assessment of Space Transportation Systems @ Uni Stuttgart

Project and study goals

Fig. 3: Life cycle phases of rockets

- Assessment of the environmental impact of space transportation systems considering all life cycle phases
- Cooperation with ArianeGroup to develop a generic dataset regarding production
 - Identification of Hot-Spots
 - Comparison of different launch system
 architectures
 - Comparison of different propellant systems
 - Impact of reusability
- Today: presentation of study results

5

Assumptions used for the study

Tab. 1: Considered orbits and required velocity

Orbits	Δv [km/s]
LEO (e.g. EO, Constellation)	9.0
MEO (e.g. Navigation)	10.0
GTO (e.g. Communication)	11.6
Trans Lunar Orbit Insertion (e.g. Exploration)	12.0
Trans Mars Orbit Insertion (e.g. Exploration)	15.0

Tab. 2: Considered propellants and their effective velocity

Propellant combination	Effective velocity			
	Sea level	Vacuum		
LOX/LH2	3050	4400		
LOX/CH4	3200	3550		
LOX/RP-1	3050	3425		
UDMH/NTO	2500	2950		
Solid (APN/AI/HTPB)	2750	2900		

7

Stage optimization towards maximum payload

 $\Delta v = \sum_{i=1}^{n} c_{e,i} \ln(\frac{1}{\sigma_i + \frac{\mu_{i+1}}{\sigma_i}})$ • General: $\mu_l = \left(\frac{\mu_1}{\mu_1 \sigma_1 + \mu_2}\right)^{\frac{c_{e,1}}{c_{e,2}}} e^{\frac{-\Delta V}{c_{e,2}}} \mu_2 - \mu_2 \sigma_2$ • 2-stage system: $\mu_{l} = \left(\frac{\mu_{2}}{\mu_{2}\sigma_{2} + \mu_{3}}\right)^{\frac{c_{e,2}}{c_{e,3}}} \left(\frac{\mu_{1}}{\mu_{1}\sigma_{1} + \mu_{2}}\right)^{\frac{c_{e,1}}{c_{e,3}}} e^{\frac{-\Delta V}{c_{e,3}}} \mu_{3} - \mu_{3}\sigma_{3}$ • 3-stage system: $\frac{\delta\mu_{l}}{\delta\mu_{2}} = f(\mu_{2},...) = 0 \qquad \frac{\delta\mu_{l}}{\delta\mu_{2}\delta\mu_{3}} = f(\mu_{2},\mu_{3},...) = 0$ • Optimization: Environmental Stage Subsystem Input impact Output optimization sizing calculation

Subsystem mass estimation

Environmental indicator	ESA	PEF	Abbreviation	Unit	Calculation Method
Global warming potential (100 y)	Х	Х	GWP	kg CO2 eq.	IPCC2013
Ozone depletion potential	Х	Х	ODP	kg CFC-11 eq.	WMO 2014 + integrations
Human toxicity potential, cancer	Х	Х	HTPC	CTUh	USEtox model 2.1
Human toxicity potential, non-cancer	Х	Х	HTPNC	CTUh	USEtox model 2.1
Abiotic resource depletion potential (metal and mineral resources)		Х	ARDPM	kg Sb eq.	CML 2002 (ultimate reserve)
Abiotic resource depletion potential (fossil fuels)	Х	Х	ARDPF	MJ	CML 2002
Photochemical ozone formation potential	Х	Х	POFP	kg NMVOC eq.	ReCiPe 2008
Particulate matter formation potential	Х	Х	PMF	Disease incidence	PM UNEP 2016
Freshwater eutrophication potential	Х	Х	FEUP	kg P eq.	ReCiPe 2008
Input Stage optimization	on	S	ubsystem sizing	Environmen impact calculation	tal Output

Environmental indicator	ESA	PEF	Abbreviation	Unit	Calculation Method
Marine eutrophication potential	Х	Х	MEUP	kg N eq.	ReCiPe 2008
Terrestrial eutrophication potential		Х	TEUP	mol N eq.	Accumulated exceedance
Ionising radiation potential	Х	Х	IRP	kBq U 235 eq.	Frischknecht et al., 2000
Freshwater ecotoxicity potential	Х	Х	FETP	CTUe	USEtox model 2.1
Marine ecotoxicity potential	Х		METP	kg 1,4-DB eq.	CML 2002
Air acidification potential (PEF)		Х	AAP1	mol H+ eq.	Accumulated exceedance
Air acidification potential (ESA)	Х		AAP2	kg SO2 eq.	CML 2002
Land use		Х	LU	Dimensionless (pt)	LANCA
Water use		Х	WU	m3 world eq.	AWARE
Primary Energy Consumption Potential	Х		PRENE	MJ	ESA LCA 2020

Impact calculation example tank

Impact calculation launch emissions

Tab. 3: Launch emission calculation (kg per kg burned propellant)

	LOX/RP-1	LOX/CH4	LOX/LH2	UDMH/NTO	Solid (HTPB1912)
CO2	3.15	2.74	0	1.46	0.39
H2O	1.26	2.25	8.94	1.2	0.28
N2	0	0	0	1.4	0.08
HCI	0	0	0	0	0.21
AI2O3	0	0	0	0	0.36

- CO2 emissions as 1:1 CO2-eq.
- Effects of other emissions (H2O, NOx, soot) are not taken into account, these can have potentially an very high influence on radiative forcing and ozone depletion
- for high-atmosphere emissions, there are no verified GWP100 values (see also "Further development of LCA methodology for reusable and sustainable launchers", in Ascension Conference, 2023)

Environmental impacts of core stage subsystems

- Very high impact from engine (>50% for GWP, ODP, ARDPF, IRP, AAP1, AAP2, LU, WU and PRENE)
- High impact from thrust structure, inter-tank structure, fuel tank and oxidizer tank
- Fuel tank has 1.7 times the impact of the oxidizer tank, although it has 2.8 times the volume

Environmental impacts of booster stage subsystems

- Upper part and SRM housing have the highest impact
- High ODP impact due to carbon fiber
- Harness influences ARDPM
 and HTPNC

Environmental impacts of upper parts subsystems

- LVA and payload fairing have the highest impact
- DLS and PAF following
- Electronics only for ARDPM and HTPNC

- High impact from manufacturing, 64% on average
- Testing 29% on average, driven by engine tests,
 >50% on ODP and WU
- Assembly 10% on ARDPF, POFP, MEUP, TEUP, IRP and PRENE

Manufacturing is on average at 45%

- Testing: 39%
- Assembly: 14 %

Manufacturing has the highest impact

 Storage has an impact >15% for HTPC, HTPNC and LU

Comparison with automotive industry (LOX/LH2 Launcher 25t LEO)

17675 t CO2-eq.

13.7 t CO2-eq. per middle-class BEV [4]

Fig. 17: Comparison of GWP100 of a launcher to automotive production (only to illustrate the order of magnitude!)

Comparison of different booster concepts

- LOX/LH2 system with solid vs. liquid CH4 booster
- Reduction to 87% in average
- Higher Impact for WU, ARDPM and HTPNC

Fig. 18: Normalized environmental indicators for launcher production

- Most concepts (3/5) have a lower impact without boosters
- 2 stages in 3/5 cases better than 3 stages
- Different results for UDMH due to high propellant production impact
- 2-stage solid very high for TMI due to inefficient staging (high structural mass)

- UDMH has the highest impact for all systems and indicators → high impact of fuel production
- Second highest impact solid fuel systems for most environmental indicators
- Third highest impact in most cases LOX/RP-1 (2 stages to GEO, 2 stages + booster, 3 stages)
- → LOX/CH4 and LOX/LH2 the "greenest" choice in terms of production (conventional)

Impact of reuse for 2-stage LOX/RP-1 systems (per t in LEO)

Fig. 30: Comparison of GWP for reuse

Fig. 31: Comparison of the ARDPM for reuse

- For ASDS, 17/19 of the indicators improve
- For RTLS, 15/19 of the indicators improve
- · Higher impact for land and water use
- Reduction of >50% for ASDS and >30% for RTLS for ARDPM, IRP and METP

Impact of reuse for 2-stage LOX/RP-1 systems (per t in LEO)

Fig. 35: Share of environmental indicators for reusable systems

- Significant reduction of the influence of the core stage
- Higher influence of fuel production, upper stage production and final integration
- Maintenance and transport to launch site low for reusable systems, but possibly underestimated

Recommendations

Conclusion

- New methodology for simple & fast environmental impact assessment in launcher design
- Results give a good insight into production in Europe
- First study showing the overall impact of launcher production with absolute values

- High impact in production from core stages as well as propellant production
- Reusability reduces environmental impact for most environmental indicators
- Structural factors and subsystem mass distribution required for accurate results

- Significant reduction
 possible in propellant and
 dry mass production →
 change to sustainable
 production
- Lowest environmental impact for 2 stage systems with LOX/CH4 or LOX/LH2

Federal Ministry for Economic Affair and Climate Action

Acknowledgements

German Space Agency, funding reference 50RL2180

J.-S. Fischer, S. Fasoulas, C. Brun-Buisson, and E. del Olmo: "*Comparison study on the bythe German Bundestag environmental impact of different launcher architectures*," in Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS, Lausanne, Switzerland, 10-14 July 2023 <u>https://doi.org/10.13009/EUCASS2023-274</u>

J.-S. Fischer, S. Fasoulas, C. Brun-Buisson, and E. del Olmo: "*Comparison study on the environmental impact of different launcher architectures*," in 74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023.

Sources:

[1] Azote for Stockholm Resilience Centre, based on analysis in Persson et al 2022, and Steffen et al 2015

[2] ArianeGroup/ESA: Ariane 6: ESA Space Transportation Program, 2018 url:https://www.eoportal.org/other-space-activities/ariane-6, [14.06.2023]

[3] Tory Bruno. Ula launch vehicle weight and cost by major elements. In Twitter, 01.02.2015.

[4] Volkswagen AG. How the id.3 lowers the carbon footprint, 2021.

https://www.researchgate.net/profile/Jan_Steffen_Fischer

Thank you!

Jan-Steffen Fischer, M.Sc.

e-mail fischerj@irs-uni-stuttgart.de phone +49 (0) 711 685-69628 www.irs.uni-stuttgart.de

University of Stuttgart Institute of Space Systems Pfaffenwaldring 29 70569 Stuttgart

https://www.linkedin.com/in/jansteffenfischer/