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Introduction

LCA’s being conducted to assess environmental footprint of the space sector [1,2]
What are the bottlenecks?

Within launcher’s life-cycle (excluding launch/reentry)
Atmospheric impact from launch-reentry 

To address these: this presentation shows results from 2 studies
LCA of different RLV types
Atmospheric impact Black Carbon within LCA

CO2 emissions forecast from future proposal space activities [1]
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Launch vehicle fleets

-VTHL RLVC4, VTVL LCH4, VTVL, LH2 
families. From [9,10]
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LCA Methodology:  Space Based SSSD 

Strathclyde Space Systems 
Database (SSSD)

Updated to latest background 
database (Ecoinvent 3.91)

Available on request on:
https://github.com/strath-ace-
labs/SSSD

https://github.com/strath-ace-labs/SSSD
https://github.com/strath-ace-labs/SSSD
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LCA Methodology:  Launcher foreground case
Infrastructure not considered (only 

recovery specific infrastructure)
Activities based on proxies:

Phase C+D
Propellants life cycle

Production
Clean room fuelling
Decontamination
General handling
Storage

Production of launcher components
Production of Stage 1 / Common 
Core+Boosters
Production of Stage 2
Production of Stage 3
Production of Fairing

What about allocation of Phase A+D?
Dominated by protoypes/test 
firings/travel

Phase E1
Assembly, Integration and Testing
Launch Campaign
Launch Event

Phase F
Recovery Operations
Refurbishment of Stage 1/Boosters
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Climate Change Impacts of RLVs: Fleet impacts

Number of launches from 
accompany paper 

RLVC4 VTHL lowest 
impact

Significant differences 
between climate metrics

Assuming ground based 
emissions result in 
significantly lower impacts 
(especially for LCH4 fleet 
with GWP20)

Are these CF’s adequately 
modelling the launcher 
impact?
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Climate Change Impacts of RLVs: Contributional
Analysis (GWP100)

VTVL LH2 (GWP100) VTVL CH4 (GWP100)
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Climate Change Impacts of RLVs: Contributional
Analysis (GWP20)

VTVL CH4 (GWP20)VTVL LH2 (GWP100)
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Climate Change Impacts of RLVs: Use of Analogue CFs 
derived from RF [11]

VTVL LH2 (GWP100) 
including high altitude 
impact
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GCM Modelling
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GCM Input: Emission profiles

Falcon 9 BC emissions Starship BC emissions
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GCM Results: Radiative Forcing
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RLVC4 had the lowest impact (except in GTP100)
In-air capturing approach showed lower impact than the sea fleet required 
within DRL operations

Launch event impacts appear as a dominating process, specially for the LCH4 
fleet and when employing GWP20, because of the non-co2 emissions modelled. 

Uncertainty in results may be completely dominated by high altitude impacts from 
launch and re-entry emissions when using analogue CFs

Significant challenge to incorporate these within LCA’s  
Climate simulations ongoing to verify analogue. Currently no major signature 

identified (different from past studies). Uncertainty in: 
Reflectivity properties vs wavelength might not be adequate for study case 
(based on large forest fires)
Pulse vs Sustained Emissions
Particle size distribution for methalox required
Plume post-combustion model

Future studies shall address these high-altitude impacts, fugitive emissions, and 
include additional LCI processes as:

Launch infrastructure (launch sites/landing sites),
Transportation processes
Development phases and test firings

Conclusions
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Email:  guillermo.dominguezcalabuig@dlr.de

The project leading to this application has received funding from the European Union’s Horizon 2020 

research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860956.

Credits: Sciency Words: Ideal Rocket Equation
https://planetpailly.com/2015/04/17/sciency-words-ideal-rocket-equation/

Any Questions?

Acknowledgments: Lois Miraux, Andrew R. Wilson, Alberto 
Sartizu, Cem Berk Senel, ASCenSIon network.. 
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Appendix: LCIA methods

LCIA
Global Warming Potential over 100 years (GWP100)
Global Warming Potential over 20 years (GWP20)
Global Temperature Change Potential over 100 years (GTP100)

Aviation based impact factors assumed as default for the assessment
Sensitivity was performed with ground based emissions
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Appendix: Past studies and climate metric derivation for 
LCA’s

§ Based on [11]
§ From instantaneous

stratospheric radiative 
forcing (𝐴):

𝑅𝐹! 𝑡 = 𝐴! 𝑅! 𝑡
§ Not TOA or Tropopause, 

nor RF or ERF
§ Assumes exponential 

decay
𝑅! 𝑡 = 𝑒"

#
$!

§ Lifetime assumed from 
averaged stratospheric 
circulation

§ Where does it sink?

§ Absolute Global Warming Potential:

𝐴𝐺𝑊𝑃! 𝐻 = '
"

#
𝑅𝐹! 𝑡 𝑑𝑡 = 𝐴!𝜏! 1 − 𝑒$

%
&!

§ Global Warming Potential

𝐺𝑊𝑃! 𝐻 =
𝐴𝐺𝑊𝑃! 𝐻
𝐴𝐺𝑊𝑃'("(𝐻)
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Appendix: Past studies and climate metric derivation for 
LCA’s

Current LCA’s use GWP 
here
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Appendix GCM Results Residence Time


