

Single-Score Methodology for Space LCA

Lily Blondel Canepari (UniPi), Lorenz Affentranger (ESA), Sara Morales Serrano (ESA), Enrico Tormena (ESA), Ferran Valencia Bel (ESA)

Clean Space Industrial Days 2023

18/10/2023

ESA UNCLASSIFIED - For ESA Official Use Only

Agenda

- 1. Introduction to propellants LCA
 - Life Cycle Impacts
 - Towards Greener Propellants
 - Why doing LCA of Propellants
- 2. Single Score Methodology
 - Single Score Steps in LCA
 - The Analytical Hierarchy Process (AHP)
- 3. Steps of the study
 - Groups of Impact Indicators
 - Questionnaire Part 1 & Part 2
- 4. Preliminary Results
 - AHP score vs PEF (Product Environmental Footprint)
 - Propellants LCA with PEF & AHP Weightings
- 5. Conclusion

1. Introduction to Propellants LCA

💳 💳 📕 🚝 🔚 🔚 🗮 💳 📕 📕 🚍 📲 📲 🚟 🚝 ன 🥵 🎽 🚺 🐜 🕂 🖬 ன 🖓

Introduction to propellants LCA

Propellants in launch systems, have an impact on the environment through all their life cycle. Considerably, they "pollute" the most during the **launch event**, the production, transport and storage.

The launch event is the only human activity to "pollute" directly in **all the atmospheric layers**.

Towards using "Greener" Propellants

How can we quantify what is "green"?

- Being "less toxic" than legacy propellants is not enough
- Not being on the SVHC should be a destructive criteria. But this list does not look only at toxicity
- Even only on toxicity, GHS 1:5 scale doesn't give a lot of shade for propellants to be greener than the legacy ones.

Criteria for SVHC Under REACH

PERSISTENCE: THE SUBSTANCE MUST BE PERSISTENT, MEANING IT DOES NOT READILY BREAK DOWN IN THE ENVIRONMENT, AND IT HAS A LONG-TERM IMPACT.

BIOACCUMULATION: THE SUBSTANCE MUST BIOACCUMULATE, WHICH MEANS IT ACCUMULATES IN LIVING ORGANISMS, PARTICULARLY IN HIGHER TROPHIC LEVELS OF THE FOOD CHAIN.

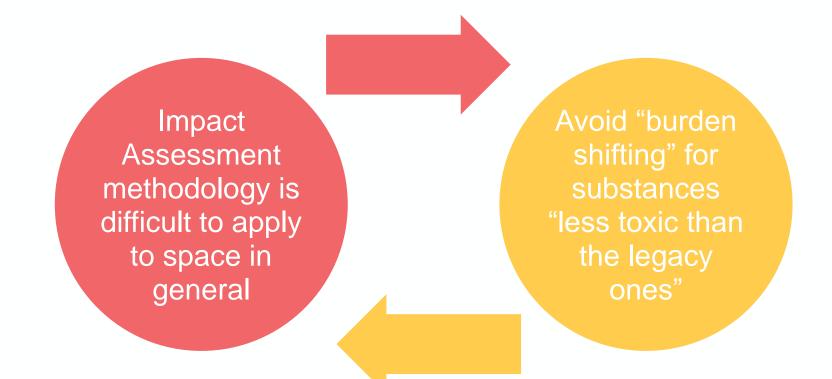
TOXICITY: THE SUBSTANCE MUST EXHIBIT INHERENT TOXICITY OR POSE A RISK TO HUMAN HEALTH OR THE ENVIRONMENT. THIS INCLUDES TOXICITY TO AQUATIC ORGANISMS, MAMMALS, OR OTHER SPECIES.

WIDESPREAD USE: THE SUBSTANCE MUST BE USED IN A MANNER THAT RESULTS IN WIDESPREAD AND SIGNIFICANT EXPOSURE TO HUMANS OR THE ENVIRONMENT.

RISK TO HUMAN HEALTH: THE SUBSTANCE MUST POSE A RISK TO HUMAN HEALTH, EITHER THROUGH DIRECT EXPOSURE OR EXPOSURE VIA THE ENVIRONMENT.

RISK TO THE ENVIRONMENT: THE SUBSTANCE MUST POSE A RISK TO THE ENVIRONMENT, INCLUDING AQUATIC AND TERRESTRIAL ECOSYSTEMS.

EQUIVALENT CONCERN: EVEN IF A SUBSTANCE DOES NOT MEET ALL THE CRITERIA INDIVIDUALLY, IT MAY STILL BE CONSIDERED AN SVHC IF IT EXHIBITS "EQUIVALENT CONCERN" TO OTHER SVHCS


https://echa.europa.eu/

https://www.aydemperakende.com.tr/en/blog/what-is-energy-class-meaning-of-the-energy-labels-2022

Only performing a full Life Cycle Assessment over the different Life Phases can give a full picture:

- Avoid burden shifting
- Be able to make more **eco-decision early-on**

Introduction to propellants LCA

- **BUT** performing an LCA is not straightforward
- Difficult to gather "confidential" data for the LCI especially for propellants
- Difficult to communicate the results due to the high number of impact categories

💻 📰 📰 🧫 🛶 💵 🔚 📰 📰 📲 📰 📲 📰 🛶 👰 🍉 📲 👯 📰 🐽 🏧 👘 🔸 The European space Agency

2. Single Score Methodology

Single Score Steps in LCA

Characterisation of the different midpoint indicators

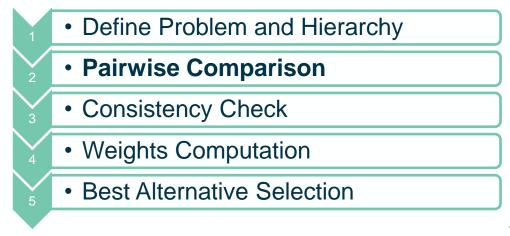
Normalisation with a reference case

Analytical Hierarchy Process (AHP)

5 Steps to Decision Making with Empathy in Your Business (readytrainingonline.com)

Analytic Hierarchy Process

- Structured decision-making through Relative Comparisons
- ✓ Consistency Assessment
- Time and Focus Demanding



- Structured Evaluation: AHP provides a structured framework for decision-making. It breaks down complex decisions into a hierarchy of criteria and alternatives, making the decision process more organized and transparent.
- 2. <u>Weighted Evaluation</u>: AHP enables decisionmakers to assign and compare the relative importance of criteria and alternatives. This weighting process allows for the effective prioritization of factors that matter most.
- **3.** <u>**Consistency and Transparency**</u>: AHP ensures consistency in judgments and offers a transparent way to arrive at well-informed decisions.

Score	Definition					
9	Extreme more importance					
7	Much stronger importance					
5	Essential or stronger importance					
3	Moderate importance of one over another					
1	Equal importance					
2, 4, 6, 8	Intermediate Importance for compromises between values					

💳 🔜 📲 🚍 💳 🛶 🛯 🗄 🗮 🚍 📲 🔚 🚛 👘 🚳 🛌 📲 🗮 🕳 en 🚳

3. Steps of the Study

Groups of Impact Indicators

Midpoint

Indicators

Human Toxicity Potential Non-Cancerous Human Toxicity Potential Cancerous Use of Restricted Substances Water Use Land Use Use of Fossil Fuel resources Use of Metals & Minerals **Freshwater Eutrophication Potential** Freshwater Ecotoxicity Potential Marine Eutrophication Potential Marine Ecotoxicity Potential **Global Warming Potential Ozone Depletion Potential Ionizing Radiation Potential** Air Acidification Potential **Photochemical Ozone Formation Potential Particle Matter Formation Potential**

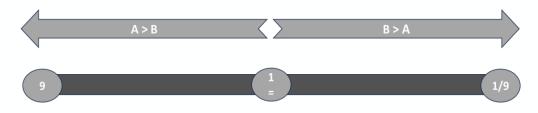
Impact on Human health Use of Natural resources **Impact on Water Quality Impact on Climate & Atmosphere** Impact on Air Quality

Endpoint Indicators

→ THE EUROPEAN SPACE AGENCY

13

Questionnaire – Part 1 & Part 2



- Weighting of Endpoint indicators: <u>https://forms.gle/PYRfn8uxsGqupf438</u> ■
 - o Collected 50 answers so far
 - Your inputs is very much welcome
- 2. Weighting on Midpoint Indicators within each group:
 - Excel sheet available on demand:

- <u>lily.blondel@ing.unipi.it</u>
 <u>cleanspace@esa.int</u>
- Collected 10 answers so far
- Your inputs is very much welcome
- 3. The next section shows the preliminary output of the study

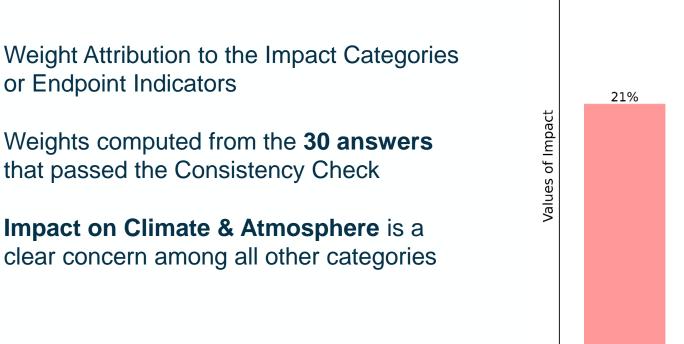
Comparison Matrix

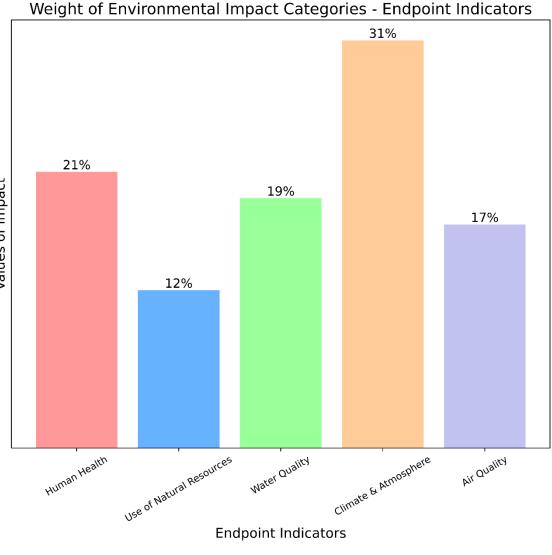
A B	Human Health	Use of Natural Resources	Water Quality	Climate & Atmosphere	Air Quality	
Human Health	1	input	input	input	input	
Use of Natural Resources		1	input	input	input	
Water Quality			1	input	input	
Climate & Atmosphere				1	input	
Air Quality					1	

- Consistency Check
- Weight Computation

💻 🔜 🚛 💶 🛶 🛯 🖳 🔄 🔄 🖉 🖉 🔚 🔚 🔤 🚛 🚳 🍉 🚺 💥 🖬 🖬 💶 📾 🔤 🛊 🔹 材 the European space agency

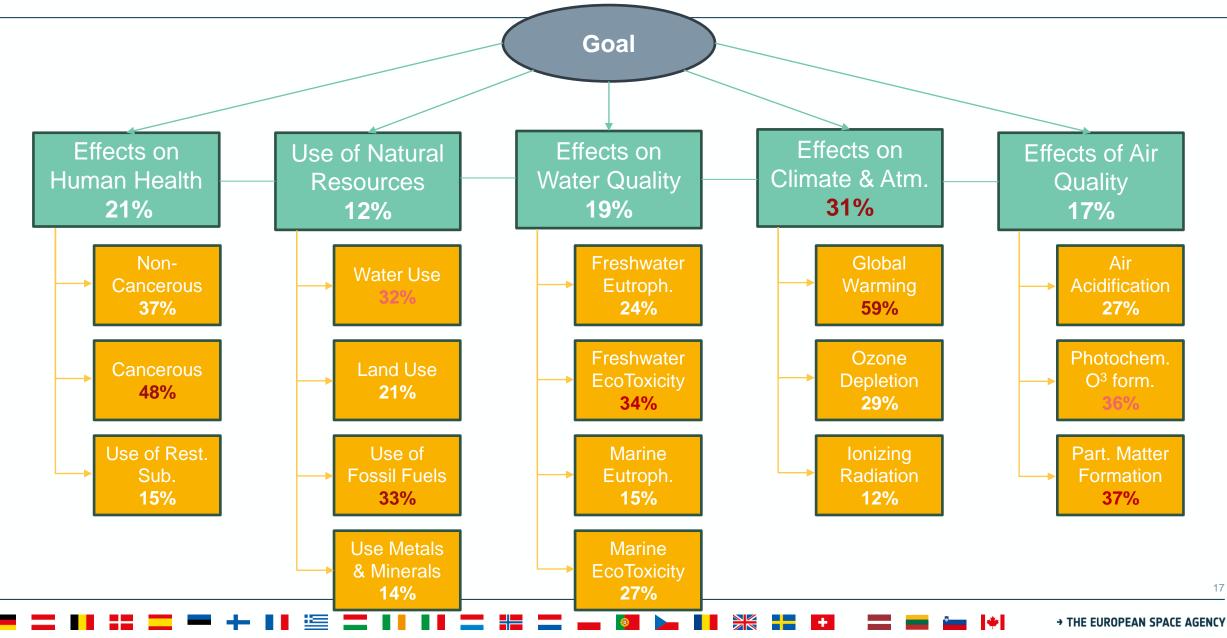
4. Preliminary Results





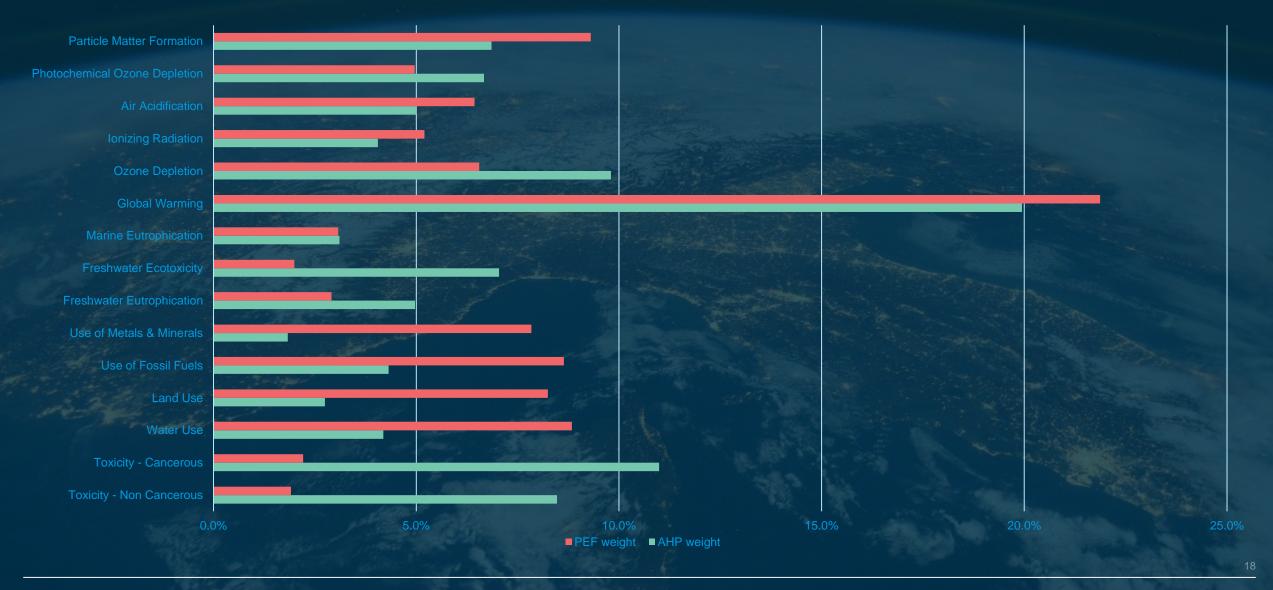
💳 💳 📕 🚼 🗰 🚍 📰 💶 🖆 🔲 🖆 🔤 📲 📲 层 🔤 ன 🖓 🎦 📲 🗮 🗮 🗮 🗮 🛨

Preliminary AHP Weights – Endpoint Indicators



16

- Ο or Endpoint Indicators
 - Weights computed from the **30** answers Ο that passed the Consistency Check
 - **Impact on Climate & Atmosphere** is a Ο clear concern among all other categories


Preliminary AHP Weights – Midpoint Indicators

Comparison of PEF and AHP weights

Single Score examples of some Propellants

Preliminary single-score of propellant LCA for in-space transportation:

Oxidizers					Fuels				
	98% Hydrogen Peroxide	Nitrous Oxide	Nitrogen Tetroxide		Ethanol	Methanol	Monomethylhydrazine (MMH)		RP-1
PEF single score	126	288	228	score	0.12	0.07	5.58		0.16
AHP single score	119	273	214	score	0.10	0.05	6.01		0.16
High Vap. Fuels Acetylene Ethane Ethene				A	F-M315E	Monopropellants FLP-106 Hydrazine 98%-Hydr peroxide (-
PEF single score	e 292	125	148	core	1.34	12.49	6.69	0.13	3
AHP single scor	e 258	92	103	score	3.01	17.43	15.68	0.12	2
Much closer score						Hy	drazine s	cores	i

Maybe Ethylene is a good

alternative if better on

other aspects

Functional Unit: All results are per kg loaded into a space system.

 <u>System Boundaries</u>: Cradle-to-gate for chemicals production, adding processes up to launch.

Work Ongoing: need to account for the overall propulsion system impact (and its performance, therefore accounting for the quantity needed)

much higher with

AHP

LMP-103S

16.98

5. Conclusion

💳 💶 📕 🛨 💳 🚍 📲 📕 ╧═ 💳 📕 📕 🚍 🚼 🚍 🔤 🔂 💁 🚺 🔰 📥 🖬 🖉

Conclusion

- For the moment, it is difficult to assess which propellants are "greener" without a full LCA study
- LCA is challenging to apply for Space
- AHP methods gives a rigorous framework of evaluation. With more answers we have a more representative outcome
- Weighting based mostly on inputs from the space community could give another valuable perspective, compared to PEF, to consider environmental-friendly decision-making of future space missions.

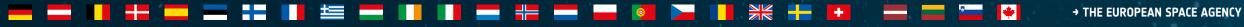
Open Points:

- Solution to limit single-score subjectivity ?
- Propagation of uncertainties in LCA ?
- Further work needed

References

 [1] A. Sarritzu, L.Blondel Canepari, R.Gelain, P. Hendrick, A. Pasini, *Analytical Hierarchy Process-based trade-off analysis of green and hybrid propulsion technologies for upper stage applications,* January 2023 International Journal of Energetic Materials and Chemicals.
 DOI:10.1615/IntJEnergeticMaterialsChemProp.2023047590

[2]


https://indico.esa.int/event/416/contributions/7321/attachments/4916/7536/Environmental%20Impact%2 0of%20Propellants%20%5BCSID%5D.pdf

Thank you for your attention !

ESA UNCLASSIFIED - For ESA Official Use Only

