

GNC for rendezvous, dynamic capture and stabilization of spinning non-cooperative target

J. Vasconcelos, B. Parreira, A. Botelho, A. Pizzetti, B. Ribeiro, G. Tofanelli, N. Hung, T. Amaral, P. Penarroya (Deimos) C. Bakouche, J-S Ardaens (ClearSpace)

ESA Clean Space Industry Days October 18, 2023

 (
 1		
 (
 1		
		No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical.
		photocopying recording or otherwise, without the prior written permission of Deimos

What is the Clearspace-1 mission?

Context

- Part of ESA ADRIOS program;
- Rendezvous, capture and de-orbit a VESPA upper stage;

Objective

- Demonstrate removal of VESPA from LEO with tentacles capture system
- Develop building blocks for active debris removal (ADR) commercial missions.

Phases involved

- LEOP;
- Orbit Phasing;
- Closing;
- Fly-around;
- Proximity Operations.
- De-orbiting

Building blocks of ADR service

- uncooperative rendezvous (RV),
- motion synchronization,
- stack stabilization,
- stacked deorbiting,
- target release.

Mission Phases

From Launch to Capture

deimos

Presentation scope

Demonstrate the several capabilities developed for the capture of space debris.

- Overall GNC architecture adopted;
- High fidelity functional engineering (FES) simulation facility for verification and validation of the developed solutions;
- Capability for on-line capture of the client:
 - Guidance for dynamic computation of approach trajectory;
 - Vision-based navigation solution
 - Control with performance robustness;
- Demonstration of very close proximity safety operations;

GNC architecture

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Deimos.

GNC Architecture

GNC Subsystem during the different mission phases.

GNC subsystems

Attitude and Orbit Control System: dedicated to the absolute 6D motion; **Rendezvous GNC**: dedicated the 6D motion relative to the target.

Rendezvous regions

Far range: switch from the absolute to the onboard relative navigation at a safe distance, with uncertainties due to ground-based relative navigation.

Mid range: before entering the close-range, safely perform the commissioning of the close range relative navigation.

Close range: Close Proximity Operations rely on onboard, accurate 6DoF relative navigation.

GNC Architecture

- Rendezvous Sensor Processing Unit (RVSPU), processes the images collected by the cameras;
- Onboard computer (OBC) hosts the GNC algorithms for AOCS and rendezvous;
- Dedicated sensors & solutions for capture:
 - Image Processing algorithms
 - Narrow Angle Camera (NAC),
 - Wide Angle Camera (WAC),
 - Ranging device,
- Comprehensive set of FDIR capabilities due to criticality of the close-range operations.

Experimental Wide-Angle Narrow-Angle Ranging Magneto-IMU GNSS Sun Sensors Star trackers Camera Device HW Camera meters **Rendezvous Sensor Suite AOCS Sensor Suite** Interfaces Mode Handling FDIR Magneto Data Processing torquers AOCS Reaction Image Processing wheels Rendezvous -mesurements -> Relative Navigation Guidance & Control - status-Thrusters Actuator Management Actuators Mass Storage **Onboard Computer** Sensor Processing Computer Close-Proximity ClearSpace Deimos Mechanism Sensors Baseline Capture Mechanism

High-level overview of the GNC system

GNC Architecture

Functionalities to support the rendezvous and capture

Control

- Target pointing to orient the relative sensors towards the target,
- Stack detumbling and deorbiting to control the stack,
- **Relative Control**. for regulating and tracking the S/C translational and rotational states around the guidance reference profiles,

Relative Navigation

- Angles-Only Navigation, detecting the target using centroids of the images taken with the Narrow-Angle Camera,
- **3D Navigation** combining direction to the target and a range measurement from the ranging device,
- Pose Estimation, estimating pose when the image of the target is large enough,

Guidance

- Impulsive delta-V with passively safe trajectories based on natural dynamics for far- to mid-range,
- *Forced motion* to approach the target along its dynamic, tumbling motion.

6DoF Thrusters Manager Function translates the force and torque commands into Pulse Length commands of space.com

Guidance

Motion Sync Guidance

- Optimal and feasible trajectory for capture of the target
 - Minimizes fuel expenditure
 - Satisfies operational constraints (Target motion, Illumination, Ground)
- Deployment-oriented development
 - Auto-codable optimization algorithm,
 - Computational optimization towards real-time execution,
- Capability to recompute midcourse trajectory
 - compensates for errors in the estimation of target motion;
- Computation outcomes
 - Best capture time-instant for
 - good illumination conditions
 - ground pointing feasibility
 - Optimization of the translational/rotational trajectory between SK and Capture
 - Minimization of control energy
 - Satisfaction of path constraints.
 - Easily configurable dynamics, constraints, cost, etc.
 - Attitude/roll profile ending at the correct configuration (ground pointing)

Servicer (approach)

deimos

Target

Navigation

Relative Navigation Architecture

Navigation function

Goal of Navigation

- Provide an estimate of the Target's relative state (position and attitude)
- Target is passive and non-cooperative

Multiple regions approach

- Far Range : angles-only (line-of-sight) navigation with visible narrow-angle camera
- Mid Range : line-of-sight augmented by ranging device providing 3D position measurement
- Close Range : pose estimation of the Target using a visible wide-angle camera, providing 6D measurements of position and attitude

Navigation Architecture

State Estimates

Far and Mid Range Relative Orbital Elements formulation

- Derivative of Keplerian elements
- Estimation through dynamic Kalman filter
- Suitable for approach through impulsive control
- Identification of states ensuring passive safety of trajectories

deimos Cearspace . today

Close Range

Cartesian coordinates formulation

- 12-D state of position, attitude, and differentiates
- Estimation through dynamic Kalman filter
- Suitable for close proximity operations using continuous control

Control Synthesis

Control Architecture

Control function

Control is robust to

- all significant actuator errors,
- navigation errors, including numerical inaccuracies,
- chaser (and stack) MCI uncertainties,
- modelling approximations such as in sloshing and flexible modes,
- environment disturbance and perturbations.

Control synthesis methodology is

- Modelling: derivation of a reliable model for robust control design;
- Synthesis: tuning the optimization parameters to attain the desired closed-loop performance and stability robustness;
- Analysis: analytical and numerical evaluation of the controller properties.

Control Architecture

FDIR

- Failure Detection, Isolation and Recovery (FDIR) needs to ensure (up to the extent possible) no collisions and to extend mission feasibility.
- Passive safety is the baseline approach, ensured by the correct design of the relative trajectories.
- CAMs are used for cases where passive safety is not ensured. A single CAM will ensure absence of collision over a given period.

Collision Avoidance Maneuver

- CAM strategy designed for simplicity and reliability;
 - 1st boost to move away from the target (short term safety)
 - 2nd boost to acquire positive V-bar velocity (long term safety)
- Retreats to a passively safe orbit;
- Guarantees minimum drift in negative V-bar;
- Minimum knowledge of S/C state required (only rough quadrant location)

Collision Avoidance Maneuver

Sizing case with:

- Initial positions in all quadrants around the target with worst-case relative-velocity.
- Non-ideal effects (sensors, actuators, flexible modes)
- 4 sigma dispersions in the parameters of the Motion Sync campaign (IMU, RCS, MCI)

Outcome:

- Positive validation in both light-weight simulator and high-fidelity environment.
- Strategy is safe for all cases, both in short and long term, with small displacements towards the target.

Simulation and Validation

GNC V&V approach

- Incremental validation over different test benches of increasing fidelity: MIL/SIL -> SVF -> FSS -> FlatSat -> PFM
- The FES is specifically designed to support the GNC design and verification:
 - Flight dynamics model
 - Space environment model
 - Open-loop and closed loop simulation
 - MIL and SIL simulation
 - Monte-Carlo simulation
 - Failure injection
 - Automatic post-processing
 - Automatic report generation

Validation of GNC system

- Configuration of several effects and dispersions:
 - Flexible modes with very low damping and dispersion of parameters (frequencies and damping)
 - Fuel Sloshing
 - Dispersion of several Sensor and Actuator non-idealities (all relevant performance parameters, positions alignments)
 - Dispersion of Orbital Parameters
 - Dispersion of Chaser spacecraft MCI parameters
 - Dispersion of target parameters (MCI, angular velocity norm, direction and initial attitude)
- Execution of MC campaign, with number of shots determined by required confidence level of requirements.

Mission Phases

Close Range Rendezvous Manoeuvres

Motion Synchronisation – Illustration only

Conclusion

Conclusions

- This presentation addressed a series of aspects to consider when defining an in-orbit service, and particular those regarding the development of the GNC subsystem.
- □ The status of target/client spacecraft plays a key role in defining the GNC requirements, architecture and hardware baseline.
- Non-cooperative targets with uncontrolled motion require the implementation of sophisticated GNC capable of executing the proximity operations leading up to capture.
- Collision safety is the major concern for the mission. Passive safety approach is used whenever possible, complemented with active safety measures when needed.
- □ GNC Development entering the detailed design phase. Will be making extensive use of high-fidelity simulation facilities for validation, before advancing to PIL and HIL test benches.

Thank You!

Contacts

José Vasconcelos jose.vasconcelos@deimos.com.pt Charles Bakouche charles@clearspace.today

