

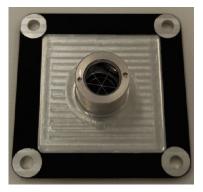
Markers Supporting Navigation

MSN Development & Qualification

19 October 2023 Clean Space Industry Days, ESTEC

<u>Ref.:</u> MSN.PRE.ADM.125 <u>Issue:</u> 1.0

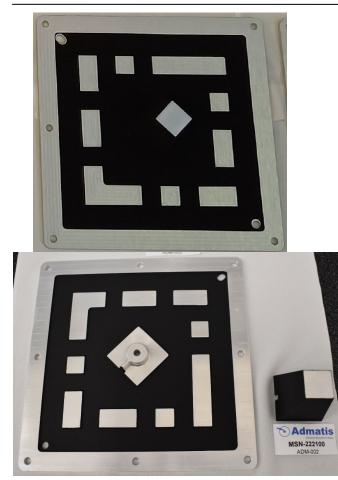
AGENDA


- **1.INTRODUCTION** 2. MARKERS DESIGN **3. COATINGS QUALIFICATION RESULTS 4. LRR AGEING TEST RESULTS 5. EQUIPMENT QUALIFICATION RESULTS** 6.2D MARKER CONTRAST MEASUREMENT
- 7. SUMMARY

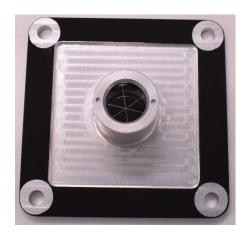
MSN is part of **A**ctive **D**ebris **R**emoval through through ESA Clean Space initiative.

- Rendezvous and capture operations can be supported by the use of rendezvous markers, installed on the target spacecraft, as a passive solution to improve the target recognition and pose estimation.
- From far to close rendezvous (50-5m), planar distributed 2D markers can be used
- For capture (below 5m), a single 3D marker is required to perform pose estimation.
- Accurate determination of both the spin rate and spin axis are important.
- Distributed LRRs allow for accurately determining the satellite attitude from ground, due to having unique LRR patterns on each face.
- A similar pattern can be used for 2D rendezvous markers and thus the LRR and 2D marker technology can be integrated.

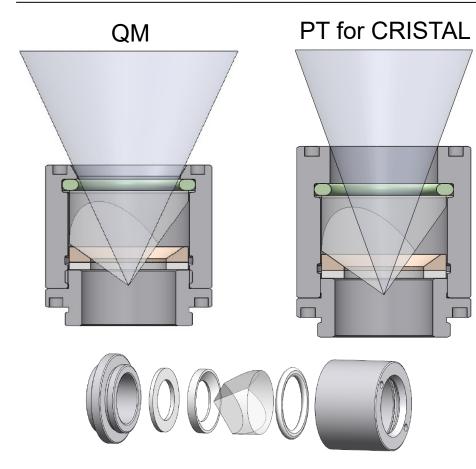
3D Marker


INTRODUCTION

3D MARKER DESIGN

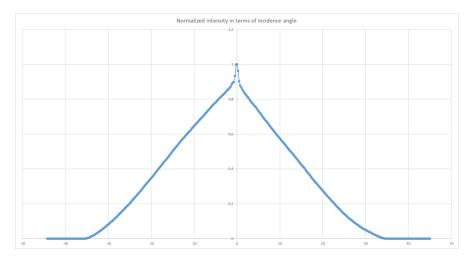

- two-piece construction of a 150×150mm EN AW6082 T6 aluminium base plate with 3mm thickness and a pyramidal element with 40mm height attached to the base plate by an MJ4×10 LN29950 Ti6Al4V screw
- bore and slot for adjustment (dowel) pins
- Alignment with Ø5mm dowel pins
- Coating: Surtec 650 + PNC
- Attachment to SC: 5pcs of MJ4×15 LN29950 Ti6Al4V screws + M4 NFL 23112 Nuflon-coated SS countersunk washers.
- Mass:0.213kg; using 20% mass margin for screws and washers: 0.25kg
- Grounding is implemented by the interface screws.
- coatings are Surtec 650 and a black paint PNC giving contrast in the VNIR and TIR spectra for detection

2D MARKER DESIGN

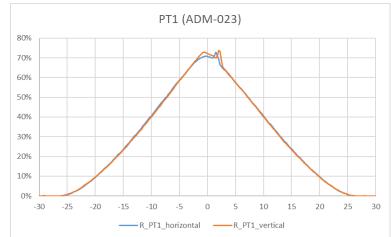


- construction of a 60×60mm baseplate EN AW6082 T6 aluminium with 3mm thickness and an LRR unit with 15.2mm height and Ø 17.8 screwed to the base plate by Ø0.535"-40TPI optical thread
- Coating: Surtec 650 + PNC
- Attachment to SC: 4pcs of MJ4×10 LN29950 Ti6Al4V screws + M4 NFL 23112 Nuflon-coated SS countersunk washers.
- Mass:0.035kg; using 20% mass margin for screws and washers
- Grounding is implemented by the interface screws.

- EN AW6082 T6 aluminium housing
- groove at the upper part to hold the FKM O-ring that gives an elastic support for the CCR.
- CCR is a Ø12.7mm Aluminum Coated, Fused Silica Corner Cube manufactured and supplied by Edmund Optics
- CCR is supported by a PEEK supporting ring and PTFE adjustment shim is placed to reduce friction.
- Parts are fixed by an EN AW6082 T6 aluminium retaining ring.
- For CRISTAL, the height of the Tube is increased from 13.2 mm to 15.5 mm to make reflected beam intensity to zero at incidence angles higher than +/- 25 deg.


MSN 2D MARKER DESIGN-LRR

FOV measurement on LRR units


QM

PT for CRISTAL

• Admatis

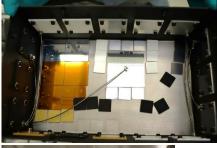
Reflected beam intensity is below 20% at +/- 25 deg.

Reflected beam intensity is below 1% at +/- 25 deg.

TEST SEQUENCE & LEVELS: TO COVER THE 6 HPCM REQUIREMENTS

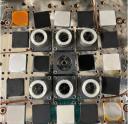
Bake out & pre-screen TVAC

Vacuum level:	min. 5E-6 mbar,
Bakeout temperature:	80°C
Duration:	minimum 72 hours,
TVAC temp. / cycles:	-60 °C / +120 °C / 8



Humidity level:	95% RH
Temperature:	50°C
Duration:	120 hours

Particles (e-) irradiation				
Surface dose: 180Mrad				
Energy:	3MeV			
Fluence (e-/cm2):	9.5E+15			


TEST SEQUENCE & LEVELS: TO COVER THE 6 HPCM REQUIREMENTS

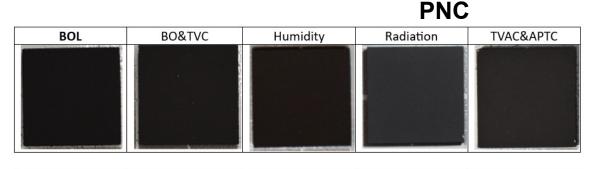
C-T-TT-T	

TVAC & APTC				
Pressure:	<1E-6 mbar / N2			
Temperature:	-180 °C / +160 °C			
Cycles:	20 + 80			

ΑΤΟΧ				
Fluence:	2.7E21 atoms/cm2			
Pressure:	<1E-6 mbar			
Typical atomic oxygen (AO) energy:	5.5 eV			

UV					
Dose:	7181 ESH				
Pressure:	<1E-6 mbar				
Acceleration factor:	4.5 SC				

9


SURTEC 650 RTU

BOL	BO&TVC	Humidity	Radiation	TVAC&APTC
ΑΤΟΧ	UV	Extended ATOX	Extended UV	Extended RAD EOL

- slight darkening
- All samples passed the visual inspection and the adhesion (tape-lift) tests after each ageing tests.

Surtec 650RTU passed the aging tests successfully and therefore considered to be qualified.

TO property	BOL	After TVAC	After ATOX	After UV	After Ext. ATOX	After Ext.UV	After Ext. Rad. EOL	Δ
Solar absorptance	0.29	0.33	0.32	0.32	0.31	0.42	0.44	+0.15
Thermal emittance	0.03	0.05	0.04	0.04	0.02	0.02	0.04	+0.01

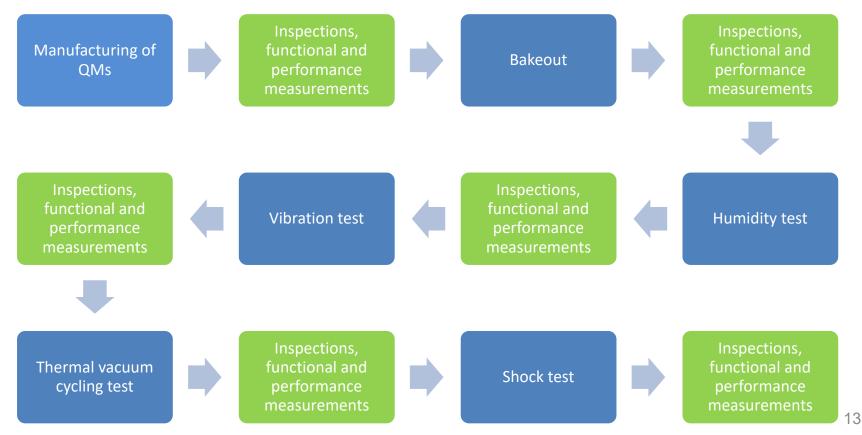
ATOX	UV	Extended ATOX	Extended UV EOL	
		The second second second		
	P. S. States			
	The Avenue of th			

- Visual change due to aging is negligible.
- All samples passed the adhesion (tape-lift) test after each ageing tests.

PNC coating passed the aging tests successfully and therefore considered to be qualified.

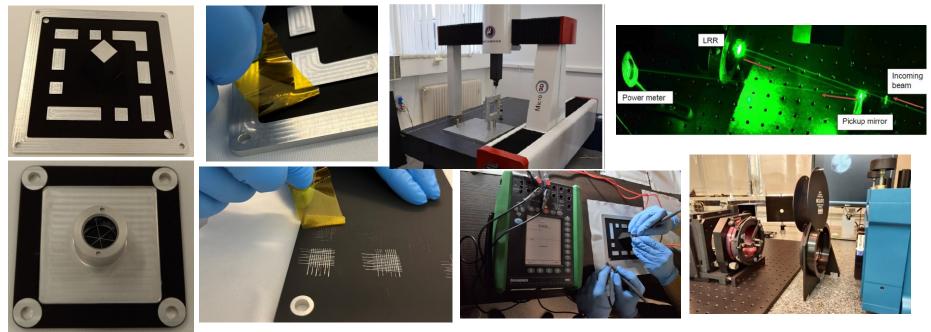
TO property	BOL	After TVAC	After ATOX	After UV	After Ext. ATOX	After Ext.UV EOL	Δ
Solar absorptance	0.97	0.97	0.97	0.97	0.97	0.97	0.00
Thermal emittance	0.93	0.90	0.92	0.95	0.96	0.96	+0.03

LRR AGEING TESTS

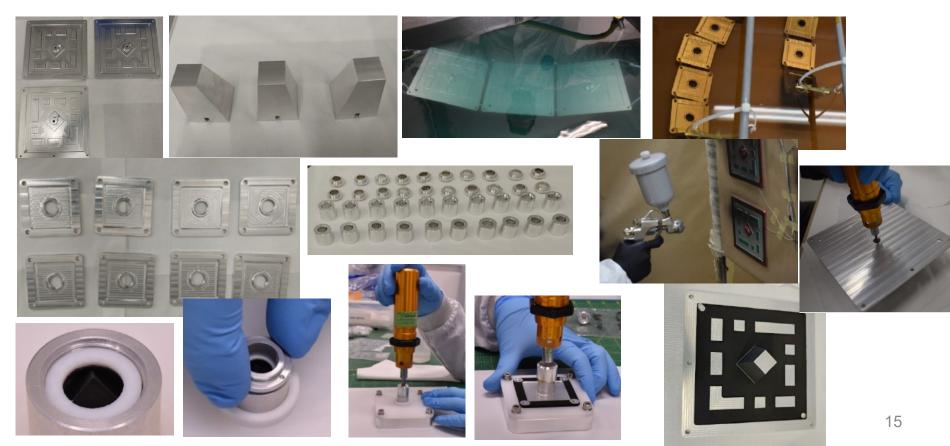


LRR units

- LRR units have been subjected to the same ageing qualification tests as the coatings
- Critical functions are the optical properties (WFE, FFDP, reflectivity)

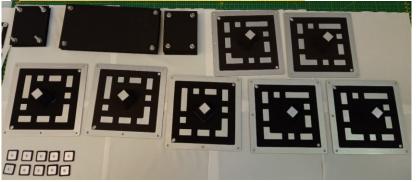

	LRR 1	LRR 2	LRR 3	LRR 4	LRR 5	LRR 6							
BØL	T Co.	2	3		5	6	Cl nu	mber	BC	ЭТ	,	After ATOX	
	1	2	3	4	1	2	LRR S/N	CCR S/N	WFE (532nm)	R(%)	WFE (633nm)	R(%)	ΔR (%)
After				1		#1	ADM-002	20.727	59.7	28.95	57.5	3.8%	
ΑΤΟΧ							#2	ADM-003	22.344	59.6	40.08	55.4	7.6%
							#3	ADM-004	33.207	59.8	70.96	57.3	4.4%
							#4	ADM-005	41.256	59.3	68.98	54.6	8.6%
After UV						#5	ADM-006	26.482	60.3	40.39	56.7	6.3%	
							#6	ADM-007	19.907	58.5	52.14	57.3	2.1%
After Radiation	O.	Ø	Ó			O						1	2

MAIT flowchart



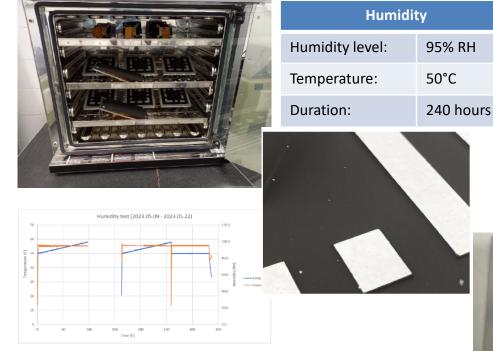
ACCEPTANCE CRITERIA

- Visual appearance
- Adhesion
- Structural integrity
- Grounding resistance
- Optical properties of LRR (WFE, reflectance)

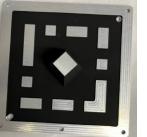

MANUFACTURING

BAKEOUT

• Bakeout is performed as the final step of the manufacturing, and it is used for preconditioning of hardware for space use and cleanliness improvement.

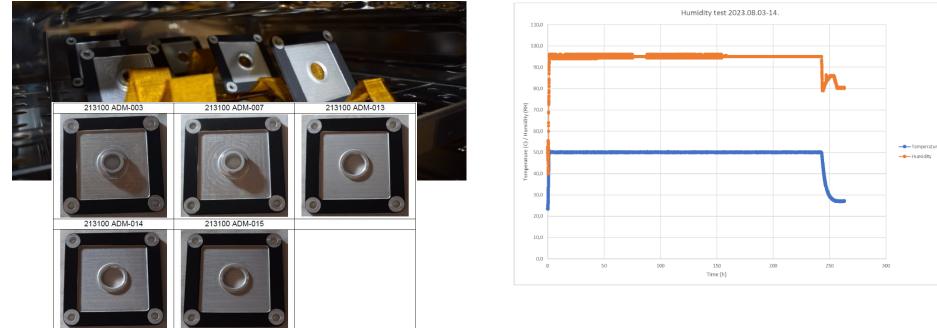

	Bal	keout
	Vacuum level:	<5E-6 mbar,
	Bakeout temperature:	80°C
	Duration:	minimum 72 hours,

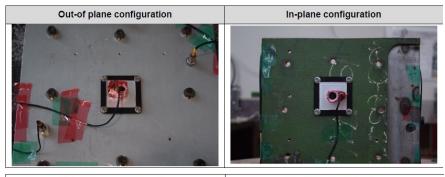
- All items passed the inspections and measurements.
- Cleanliness measurement result: 0.12×1E-07 g/cm2.
- Bakeout of all items is considered successful.


HUMIDITY (DAMP HEAT) TEST

• Humidity-, or damp heat test is a control for corrosion resistance of exposed surfaces like conversion coating and topcoats stored in Class 6 (indoor, controlled) environment.

unexpectable power outage.


- Test articles spent 2 days under uncontrollec conditions.
- Visual failure has been observed on 3D Markers and corresponding witness plate painted with PNC after the humidity test.
- All other items have passed the visual inspection.
- All items passed the adhesion tests.

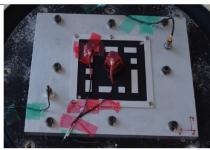

MSN EQUIPMENT QUALIFICATION **Admatis** HUMIDITY (DAMP HEAT) TEST-REPEAT

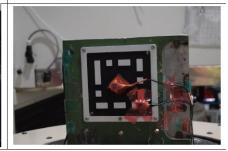
- All items passed the visual inspection and the tape-lift test.
- Based on the test results of the repeated humidity test, the unexpected test chamber failure has been found as the cause of the NC.
- Based on these results, the humidity test of QMs has been considered successful.

• Vibration test is performed to prove that equipment is free of workmanship defects and will be able to survive launch and on-orbit loads without loss of functionality,.

Out-of plane configuration

DS V875-440T shaker


2x 8-channel VR9500


mplifie

35.6kN

control system

shaker

In-plane configuration

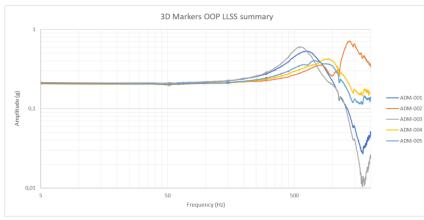
VIBRATION TEST-LEVELS

Qualification level random (120s)

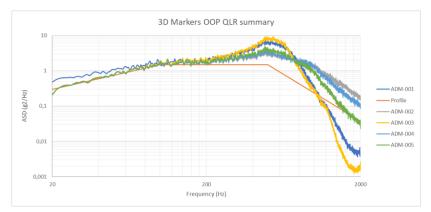
Out-of plane							
Frequency (Hz)	gRMS						
20	0.301657	+3 dB/oct					
100	1.5	1.5 g2/Hz	32.9				
500	1.5	1.5 g2/Hz	52.9				
2000	0.0376783	-8 dB/oct					

In- plane								
Frequency (Hz)	ASD (g2/Hz)	Level	gRMS					
20	0.103844	+ 3 dB/oct						
70	0.361899	+ 12 dB/oct						
100	1.5	1.5 g2/Hz	25.4					
300	1.5	1.5 g2/Hz	25.4					
400	0.357713	-15 dB/oct						
2000	0.0719377	-3 dB/oct						

Frequency Search Spectrum							
Frequency Amplitude Speed Direction							
(Hz)	(g)	(Oct/min)					
5 to 2000	0.2	2	One sweep up				

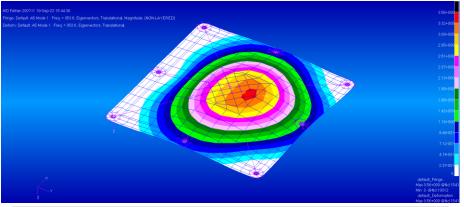

Low level sine

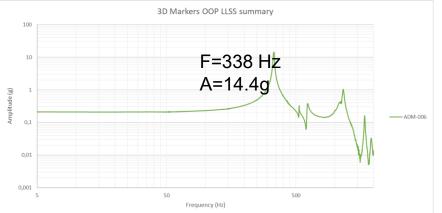
Qualification sine (2oct/min)


All axis					
Frequency (Hz)	Level				
5-30	±22.5mm				
30-125	30g				

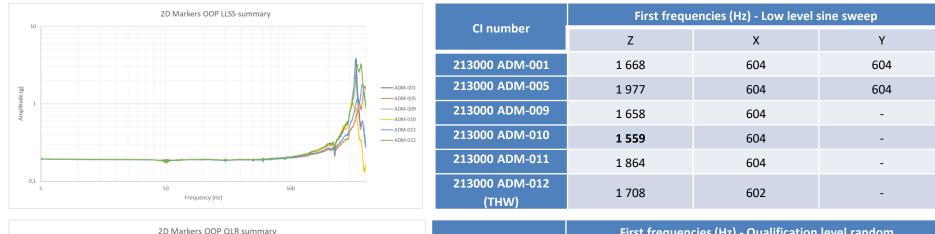
	All	axis	
	Frequency (Hz)	Level	
Req.	5-20	±22.5mm	
	20-125	30g	

VIBRATION TEST-3D Marker results




Claumhan	First frequencies (Hz) – Low level sine sweep					
Cl number	Z	Х	Y			
223000 ADM-001	641	595	599			
223000 ADM-002	814	594	592			
223000 ADM-003	568	606	599			
223000 ADM-004	937	597	599			
223000 ADM-005	726	597	599			

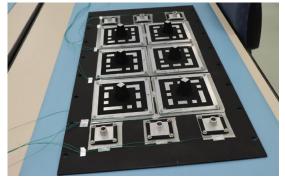
Cl number	First frequencies (Hz) – Qualification level random					
Crindinber	Z	x	Y			
223000 ADM-001	541	588	588			
223000 ADM-002	N/D	580	580			
223000 ADM-003	541	588	588			
223000 ADM-004	N/D	588	588			
223000 ADM-005	N/D	588	588			


VIBRATION TEST-3D Marker results-OOP LLSS-thermal washers configuration

- Analysis resulted 354Hz which is in line with the 338 Hz measured frequency.
- Requirement for secondary structure is 140 Hz for the first main mode, which is well above the requirement.

VIBRATION TEST-2D Marker results

Cl number	First frequencies (Hz) - Qualification level random					
Cinumber	Z	х	Y			
213000 ADM-001	1 641	595	594			
213000 ADM-005	1 851	594	594			
213000 ADM-009	1 540	594	-			
213000 ADM-010	1 485	594	-			
213000 ADM-011	1 770	594	-			
213000 ADM-012 (THW)	1 653	594	-			

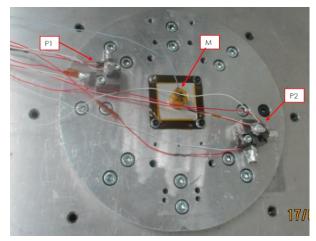

VIBRATION TEST-SUMMARY

- There was no sign of cracks, deformation, disintegration during and after the vibration test on the test articles.
- There was no sign of cracks, deformation, disintegration during and after the vibration test on the LRR units.
- All items withstood the QL loads without degradation.
- No nonconformances have been revealed as a result of the vibration test.
- 3D measurement results after the vibration test showed no major deviations significantly out of tolerance- compared to ones recorded before the vibration test.
- All items passed the grounding measurement after the vibration test.
- Vibration test of the 2D Markers Qualification Models in the configuration in terms of random and sine test is considered successful.

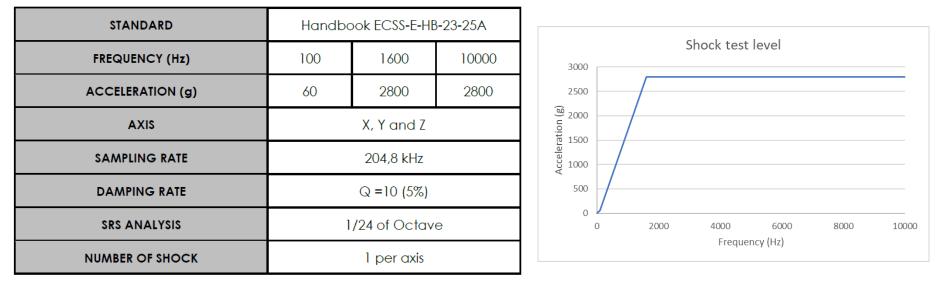
THERMAL VACUUM CYCLING TEST

Thermal vacuum cycling test objective is to qualify the hardware in terms of on-orbit thermal conditions.

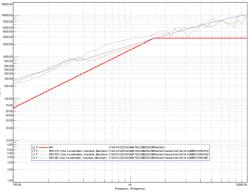
The requirement for the cold temperature of T=-180°C was not met during the test. The minimum temperature reached during the first cold cycle on the TRP (average of all test specimens) was T=-175°C which required a dwell time of 26.5 hours. Decision has been made to reduce the cold cycle temperature requirement to T=-170°C.

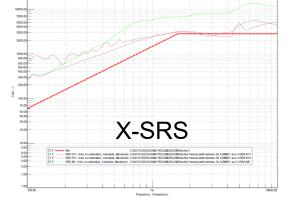

- Temp. Range is -170 °C/ +160 °C
- P=5.5E-06 mbar
- 8 cycles
- All items passed the inspections & measurements
- No nonconformances have been revealed as a result of the thermal vacuum cycling test
- Based on these results, the thermal vacuum cycling qualification test of QMs has been considered successful²⁵

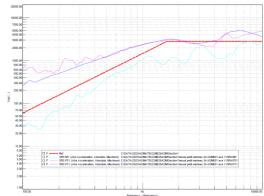
SHOCK TEST


Shock test is performed to qualify the hardware against mechanical environmental loads during the launch phase.

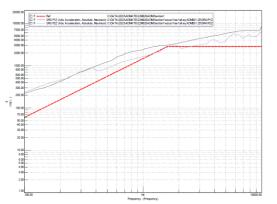
- Shock levels are controlled by two tri-axial accelerometers (P1 and P2)
- Measurement accelerometer (M) is located on the HW

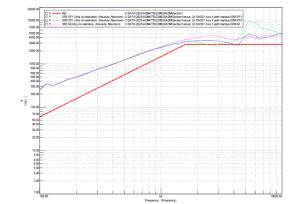


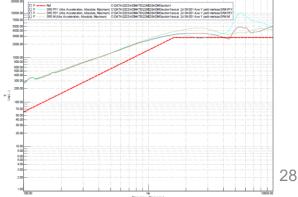

SHOCK TEST-levels



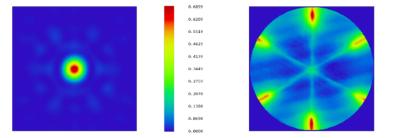
The profile is the same for both benches. Z axis is performed on free fall test bench, X and Y axes are performed on pendulum hammer test bench.






Z-SRS

SHOCK TEST RESULTS


- There was no sign of cracks, deformation, disintegration during and after the vibration test on the test articles.
- There was no sign of cracks, deformation, disintegration during and after the vibration test on the LRR units.
- Dimension check showed minor deviation (ADM-012): The true position of the tube is out of tolerance with 0.0311 mm (tolerance is 0.1 mm).
- All items withstood the QL loads without degradation
- All items passed the grounding measurement after the shock test.
- All items passed the torque check.
- Based on these results, the shock test of QMs has been considered successful.

Optical measurements-2D Markers

0.4691

0.3920

-0.1478

WFE requirement is 0.1 λ .

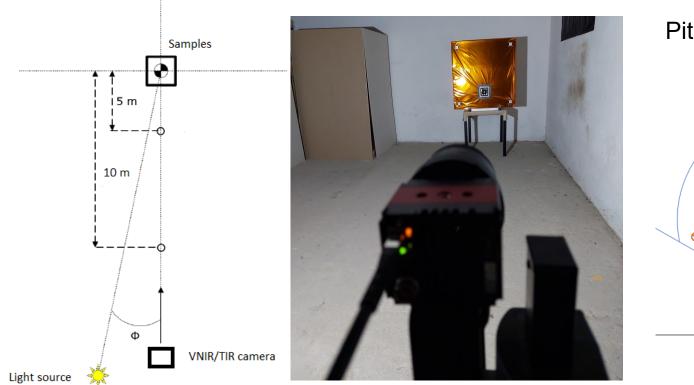
EOT measurements show that this requirement is met.

Polychromatic FFT PSF		Wavefront Function			
2023. 04. 05. 0.6328 to 0.6328 μm at 0.0000 (deg). Side is 0.50 mr.	Gabor Erdei, BME AFT Zemax OpticStudio	0.6328 µm at 0.0030 (deg) Peak to valley = 0.7711 waves, RMS = 0.1173 waves.	Gabor Erdei, BME AFT Zemax OpticStudio		
Surface: Image Reference Coordinates: 0.00000E+00, 0.00000E+00	retro3.zmx Configuration 1 of 1	Surface: Inage Exit Pupil Diameter: 1.1000E+01 Millimeters	retro3.zmx Configuration 1 of 1		

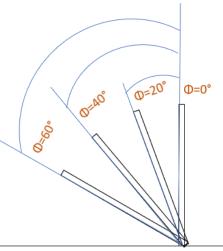
Configuration 1 of	1	Con	figuration 1 of 1					
1.0			BOL			EOT		
0.8 0.7 0.6 0.6 0.4 0.3 0.2 0.1	Cl number	WFE P-V value (λ)	WFE RMS value (λ)	Relative irradiance at peak	WFE P-V value (λ)	WFE RMS value (λ)	Relative irradiance at peak	
	ADM-001	0.7711	0.1173	0.68	0.5157	0.0780	0.80	
2021. 04. 05. Field : 0.0000, 0.0000 (dmg) Havelength Polychromatic Lin Y Section, Center Col. Configuration 1 of Configuration 1 of	ADIVI-007	Sub	ject to pre-sho	ck test	0.6956	0.0805	0.80	
	ADM-009	1.0088	0.1129	0.69	0.6053	0.0739	0.82	
	ADM-012	0.3238	0.0458	0.90	0.6001	0.0775	0.80	

QUALIFICATION SUMMARY TABLE

No.	Description	P/N	S/N	Bakeout	Humidity	Vibration	TVAC	Shock
1.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-001 PT	PASS	N/A	N/A	PASS	N/A
2.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-002 PT	PASS	N/A	N/A	N/A	N/A
3.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-003 PT	PASS	N/A	N/A	PASS	N/A
4.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-001	PASS	PASS Visual failure*	PASS	PASS	PASS
5.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-002	PASS	PASS Visual failure*	PASS	PASS	PASS
6.	3D Marker (Surtec 650+PNC)	MSN-223000	ADM-003	PASS	PASS Visual failure*	PASS	N/A	N/A
7.	3D Marker (Surtec 650+AQ PUK)	MSN-223000	ADM-004	PASS	PASS	PASS	PASS	PASS
8.	3D Marker (Surtec 650+AQ PUK)	MSN-223000	ADM-005	PASS	PASS	PASS	PASS	N/A
9.	3D Marker (Surtec 650+AQ PUK)	MSN-223000	ADM-006	PASS	PASS	PASS (partially)	N/A	N/A
10.	2D Marker (Surtec 650+PNC)	MSN-213000	ADM-001	PASS	PASS	PASS	PASS	PASS
11.	2D Marker (Surtec 650+PNC)	MSN-213000	ADM-005	PASS	PASS	PASS	PASS	N/A
12.	2D Marker (Surtec 650+PNC)	MSN-213000	ADM-009	PASS	PASS	PASS	PASS	PASS
13.	2D Marker (Surtec 650+AQ PUK)	MSN-213000	ADM-010	PASS	PASS	PASS	PASS	N/A
14.	2D Marker (Surtec 650+AQ PUK)	MSN-213000	ADM-011	PASS	PASS	PASS	PASS	N/A
15.	2D Marker (Surtec 650+AQ PUK)	MSN-213000	ADM-012	PASS	PASS	PASS	PASS	PASS

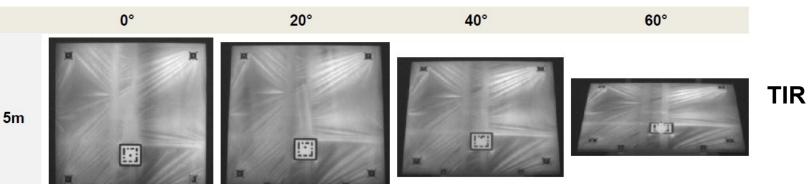

3pcs of 2D and 3pcs of 3D Marker has been passed the whole qualification test sequence.

CONTRAST MEASUREMENT


Description	P/N	S/N	

Description	P/N	S/N
2D Marker	MSN-213000	ADM-003
2D Marker	MSN-213000	ADM-007
2D Marker	MSN-213000	ADM-013
2D Marker	MSN-213000	ADM-014

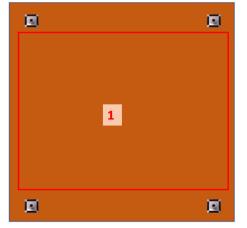

CONTRAST MEASUREMENT

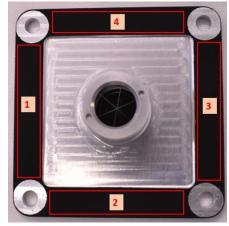


Pitch angles of test board

CONTRAST MEASUREMENT

CONTRAST MEASUREMENT


The evaluation is performed using the Michelson Contrast formula:


I: intensity (i.e. pixel gray value) [0<C<1]

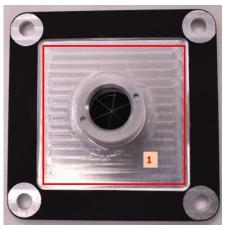
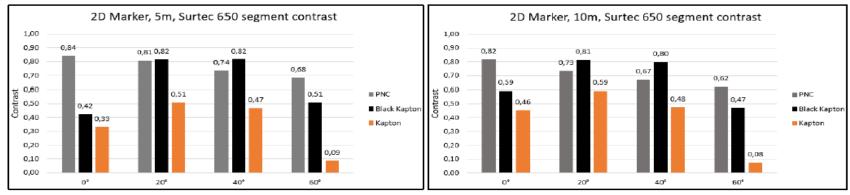
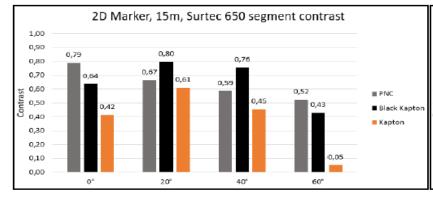
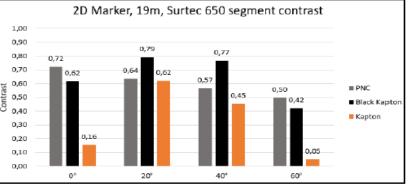

 I_{max} can be considered as average intensity value of the target, while I_{min} is the average intensity of the background.

Image processing software: ImageJ

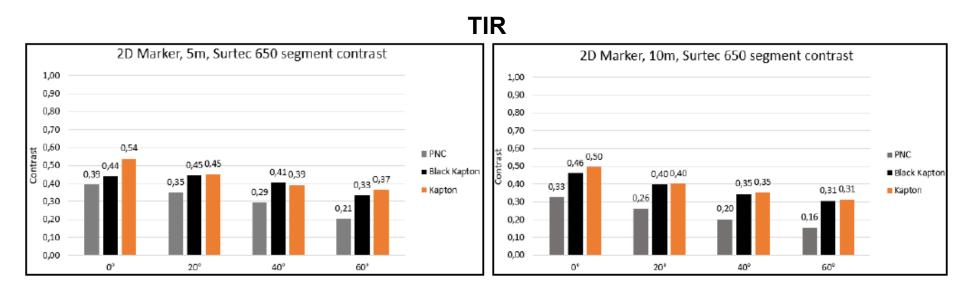
To calculate the average Intensities ROIs (Region of Interest) marked have been applied:






<u>Imax - Imin</u>,

CONTRAST MEASUREMENT RESULT


VNIR

CONTRAST MEASUREMENT RESULT

QUALIFICATION SUMMARY

- 3 pcs of 3D Markers and 3 pcs of 2D Markers went through the whole qualification test series. Remaining models have not been subjected of all tests.
- Bakeout of all models were successful.
- Visual failure has been identified after the humidity test on 3D Markers S/N ADM-001, ADM-002 and ADM-003. All remaining models subjected the humidity test passed the test successfully. As test chamber failure has been identified as the root cause of the NC and repeated humidity test was performed successfully, the humidity test of the subjected models have been declared successful.
- Vibration test has been performed in baseline (without thermal washers) configuration. All
 models subjected the vibration test passed the random qualification and sine test successfully.
- Thermal vacuum cycling and shock test has been performed successfully on the subjected models.
- Inspections and measurement between the tests showed no major deviations compared to the initial conditions.
- Based on the above the qualification of the 2D and 3D Markers against the HPCM requirements can be declared successful.

2nd GENERATION OF MARKERS

- Lowering of unwanted reflections of the Surtec coated parts of the markers with modification of surface roughness of the base material
- Application of inorganic black coating for the black parts of the markers
- CCR fixation in the LRR unit with glueing