2023 Clean Space Industry Days

19 October 2023

ESTEC, The Netherlands

SPACE SUSTAINABILITY RATING

Utilization of a risk index to incentivize satellite operators to follow best practices for post mission disposal

and doing "enough" is not enough anymore...

(1) ESA, Space Environment Report, June 2023 release

 (2) F. Letizia et al., Assessment of orbital capacity thresholds through long-term simulations of the debris environment, Advances in Space Research, https://doi.org/10.1016/j.asr.2022.06.010

A NEED TO INCENTIVIZE FURTHER ADOPTION OF BEST PRACTISES

<u>There are no legally binding space debris mitigation</u> <u>instruments (at international level)</u>

THE SSR AS AN INCENTIVE TOOL

Encouraging space actors to design & implement sustainable & responsible space missions for the longterm sustainability of the space environment

SSR MODULES IN A NUTSHELL

SPACE SUSTAINABILITY RATING ACKNOWLEDGEMENT

The Mission index module methodology of the Space Sustainability Rating heavily relies on research that have been performed in the past years by several entities such as ESA Space Debris Office and Politecnico di Milano.

MISSION INDEX - INPUTS

A space risk footprint

- Quantifies the collision risk using an index metric;
- Evaluates the risk contribution of a mission to the debris environment **compared to a capacity target**;
- Uses high level parameters that can be obtained early in the mission development;

7

MISSION INDEX - FORMULATION

Index formulation for one object, at a given epoch

High $I \Leftrightarrow$ High risk \Leftrightarrow Low Score

I depends on orbital parameters and spacecraft physical properties

Environment simulated with

Cumulative collision probability

$$p_c = 1 - e^{-\rho \cdot \Delta V \cdot A \cdot \Delta t}$$

- *ρ* the density of object large enough to trigger a catastrophic collision (1)
- ΔV the relative impact velocity
- A the cross-sectional area
- Δt the timestep increment value

Collision severity (2)

- Synthetic fragmentation triggered and modelled (reformulated NASA breakup model)
- Propagation of the debris cloud (phase space density)
- Quantification of the increased probability of collision for a set of representative objects

MISSION INDEX – INDEX MAPS

The index value is discretized, and integrated over the object's lifetime

$$I = \int_{t_0}^{t_f} (p_c \cdot e_c) \, dt$$

Discretized index allows to account for the spacecraft trajectory evolution (e.g. orbit raising, disposal manoeuvres, orbital decay)

MISSION INDEX – TRAJECTORY EVOLUTION

MISSION INDEX – TRAJECTORY EVOLUTION

RATING

MISSION INDEX – TRAJECTORY EVOLUTION AND PMD

RATING

MISSION INDEX – DISPOSAL RELIABILITY

Accounting for disposal failure scenario:

* For a constellation, the value of α is aggregated for the entire fleet (i.e. weighted average)

MISSION INDEX – NORMALIZATION

How to output a score?

* No time to present it! More details in the backup slides at the end of the presentation

MISSION INDEX – NORMALIZATION

What is "full"?

Capacity identified from long term extrapolation scenarios (the "capacity" *C*)

A normalized score is computed based on the **share of yearly available capacity** consumed by the mission

$$\hat{I} = I_{mission} / (C - I_{already \, used})$$
$$S_{abs} = 0.5 - \frac{1}{10} \log_{10}(\hat{I}) - \frac{\hat{I} - 1}{50}$$

"Absolute" index score, 80% of the mission index score (2)

(1) F. Letizia et al., Assessment of orbital capacity thresholds through long-term simulations of the debris environment, Advances in Space Research, https://doi.org/10.1016/j.asr.2022.06.010
 (2) Saada et al., Promoting responsible space practices: A primer on the Space Sustainability Rating

(1)

MISSION INDEX – NORMALIZATION

<u>"Relative" mission index: going</u> beyond recommendations

- Definition of a reference case
- Comparison to the reference case

$$I_{relative} = I_{mission}/I_{ref}$$

 $S_{rel} = 1 - (I_{rel})^{\varepsilon}$

"Relative" index score, 80% of the mission index score

MISSION INDEX - APPLICATIONS

 Raise awareness: Quantify the impact of a spacecraft failure(s) on the space environment

Index of a failed satellite vs normal operation and disposal

Satellite failure
8 years operation + disposal

MISSION INDEX - APPLICATIONS

- Raise awareness: Quantify the impact of a spacecraft failure on the space environment
- Analysis: Identification of critical phases (parking, raising, disposal) within mission. Derive different raising and disposal scenarios...
- PMD success rate sensitivity analysis for constellations

Risk based approach:

- More robust considering the increasing launch rate
- Available capacity value can evolve (e.g. due to fragmentations, removal)

• Applicability to a rating scheme:

- Can be applied now!
- Easier scoring threshold establishment
- Complementary with compliance based modules

SPACE SUSTAINABILITY RATING

CONCLUSION

SSR as a tool to incentivize further adoption of the zero debris approach?

* final numerical values under consolidation

GET IN TOUCH

Adrien Saada

Operations Officer adrien.saada@ssr.space

spacesustainabilityrating.org

SPACE SUSTAINABILITY RATING

EPFL continuing education for professionals – Space Sustainability Course: "How to design more sustainable missions?"

LEARN MORE

BACKUP SLIDES

SSR PROCESS

THE RATING PROCESS IN A NUTSHELL

SSR FEEDBACK LOOP

Reco.	Description	Score increase (module)	Score increase (Tier)
MI_1	Comment	+3.5%	+1.75%
DS_1	Comment	+4%	+0.66%
COLA_1	Comment	+12%	+1.98%
DIT_1	Comment	+5%	+0.6%
Total SSR Sc	+8.29%		
New tier	Gold		

Tier Score 87.71 % from 64.65 %	↑ 23.06 %	Bonus Score 79.85 % from 57.	71 %	↑ 22.14 %
Mission Index 96.67 % from 61.03 %	Collision Avoidance Ca	oabilities ↑ 10.56%	Data Sharing 95.95 % from 52.93 %	↑ 43.02%
Detection, Identification and Tracking 33.33 % from 69.17% -35.83%	Application of Design a Standards 60.92 % from 46.88	nd Operation % 14.05%	External Services 100 % from 50 %	↑ 50%

BACKUP SLIDES

RISK REDUCTION FROM COLLISION AVOIDANCE IN THE INDEX COMPUTATION

MISSION INDEX – COLLISION AVOIDANCE

MISSION INDEX – COLLISION AVOIDANCE

Index value over time, no collision avoidance*

space sustainability *Courtesy: <u>debris index frontend</u>, ESA space debris office

MISSION INDEX – COLLISION AVOIDANCE

Index value over time, with collision avoidance*

