2023 ESA Clean Space Industry Days

OBJECT CHARACTERISATION AND OPTICAL DATA PROVISION SERVICE IN SUPPORT OF END-OF-LIFE MANAGEMENT

Tuesday 17th October 2023

Ángel Gallego
Diego Escobar
Adrián de Andrés
Carlos Paulete
Marc Torras
Javier Carro
Alejandro Cano
Lorenzo Porcelli

Contents

- Object characterisation with on-ground SST measurements
 - Introduction
 - Methodology
 - Results
 - Conclusions and future work
- Optical data provision service in support of EOL operations
 - Meteosat-8 EOL support

Introduction

Introduction

EOL management

- Facilitate debris mitigation operations
 - Monitor passivation and graveyard orbit transfer
 - Characterise object for debris disposal
- Passive attitude monitoring:
 - Stability state determination
 - Rotation rate and axis determination
 - Object characterization
 - Physical properties
 - Optical properties
- Other applications:
 - Contingency modes
 - Military intelligence

Credits: EUMETSAT

Credits: ESA

Data availability maximization

■ SST sensor networks:

- Light-curves
- Radar RCS
- Laser light-curves
- Orbital data

■ Data fusion:

- Different types of sensor
- Different data types
- Same data types from different sensors
- Other sources

Advantages:

- Better characterization performance than considering each piece of data separately
- Lessens dependency on individual data sources: Better availability

■ Public catalogues

- RSO Characterization information (shape, size, materials, rotation...) of public objects

Previous characterization steps

- Attitude stability classification
 - Using ML methods
 - Stable/Unstable

 Apparent rotation period determination based on Lomb-Scargle periodograms + Epoch Folding with filtering and folding evaluation

■ Size estimation based on M.D. Hejduk (light-curves) and NASA SEM (RCS) models

Attitude estimation

Previous Steps output

Attitude determination

Shape

- Based on Least-Squares Method (LSM) filter
 - Using light-curves
 - Attitude mode parameters estimation
 - A-priori information can be used (type, rotation, size, shape, materials)
- If prior knowledge not available:
 - Scale factor estimated for size-vs-materials uncertainty
 - Multi-model approach is possible (i.e., shape/size/materials combinations)
 - Shape description and dimensions may be gathered from public sources

- Inertial rotation rate estimation
- Rotation axis estimation

Attitude estimation: GMV's light-curves simulator, GRIAL

- Bidirectional Reflectance Distribution Function (BRDF) over a 3D shape
 - ratio of reflected light in a direction
 - specular and diffuse terms considered

- Model can be simplified to its main features(body + panels + other large parts)
- Self-shadowing considered
- OpenGL based (GPU acceleration)
- High computational efficiency

Objects stabilization classification results with Machine Learning

- Using light-curves (real MMT9 and simulated data, for training)
- RCS measurements from S3TSR radar
- ~95% accuracy with simulated data
- ~85% accuracy with real MMT9 data
- Clear improvement when fusing tracks
- Planned model training improvement with other data sources

- [1] Gallego, Ángel, et al. RSO Characterization and Attitude Estimation with Data Fusion and Advanced Data Simulation AMOS Technologies Conference, Maui Economic Development Board, Kihei, Maui, Hl. 2023.
- [2] Paulete, Carlos, et al. AIMLRCS: A Machine Learning approach to spacecraft attitude and object identification based on RCS from the S3TSR. 8th European Conference on Space Debris, p. 167, 2021

Apparent rotation period determination results

	Period id accuracy	Multiple of period accuracy	
Simulated data	65%	95%	
Real data	53%	86%	

Size estimation results

- Validation with real spherical objects and real data:
 - Real light-curves of STELLA & LAGEOS 1 satellites

Satellite	Real diameter	Albedo = 0,175 (Default for space debris)	Albedo = 0,7 (Aluminium)
		Estimated size	Estimated size
STELLA	0,24 m	0,48 m (<mark>x2 real</mark>)	0,24 m (exact value)
LAGEOS-1	0,60 m	4,95 m (x <mark>8 real</mark>)	2 m (x3.3 real)

- Real diameter = 2m
- Mean error of 13% over 100 real tracks

STELLA

LAGEOS-1

 High dependency on albedo values

GRIAL, light-curves simulation results

- Validation with real light-curves of ESA' SMOS satellite
 - Available attitude ephemeris at time of observations

- Simplified SMOS model
 - 2 materials (panels + body)
- Simulated vs Real measurements:
 - Mean error 0,01
 - STD 0,12
- Reference performance: 250 obs/s with Intel UHD Graphics GPU

Attitude estimation results

- Case of study: Falcon 9 upper stage rocket body (rotating object) with real MMT9 observations
- Model: Simple cylinder of correct proportions according to DISCOS.
- Assume rotation axis knowledge
 - Estimated parameters:
 - Initial orientation
- RMS error: 0,42

Attitude estimation results

- Case of study: Falcon 9 upper stage rocket body (rotating object) with real MMT9 observations
- Model: Simple cylinder of correct proportions according to DISCOS.
- Assume no attitude knowledge
- Estimated parameters:
 - Initial orientation
 - Rotation axis
 - Rotation rate
- Restituted attitude:
 - Rotation axis: 11° from perpendicular to axis.
 - Rotation rate within 0.04%
- RMS error: 0,68

Conclusions and Future work

Conclusions and Future Work

- Conclusions
 - Accurate results can be obtained with low prior knowledge of the object
 - Decision tree approach with data fusion allows for incremental characterisation
 - -Good results with this preliminary methodology, **improvements expected** with further refinement
- Future work and improvements
- Attitude classifier
 - -Expansion to larger dataset for robustness
- Rotation rate estimator
 - Inertial rotation rate estimation
- Size estimator
 - Albedo values parametrization

- Attitude determination
 - -Try other filters (UKF, EKF, etc) for improved robustness
 - -Multi model approach to reduce dependency on prior object knowledge
 - -Consider **prior uncertainties** for continuous characterisation
 - -Consider **solar panel attitude** (already in advanced state with promising results)

Optical data provision service in support of EOL operations

Overview of the optical data provision service

- Optical data provision service to support EUMETSAT MSG and MTG GEO constellations.
 - Main products: Optical data (tracks) + ephemeris
- GMV + 6ROADS:
- Flight dynamics and orbit determination expertise by GMV
 - Operational and extensively used software (FocusSST)
- Global sensor network from 6ROADS.
- High reactivity and accuracy required.
- Routine and event triggered OD and manoeuvre estimation.

Study case: Meteosat-8 EOL operations

Study case: Meteosat-8 EOL operations

Event summary

Objectives of the EOL operations: Increase the SMA of the satellite at least 300 km, while maintaining
a low eccentricity. Achieved through a series of manoeuvres, generally 2 per day.

Challenges encountered:

- Observation difficulties: Occasional difficult weather and limiting illumination conditions.
- Large number of manoeuvres: Short free-flight periods leading to possible OD accuracy degradation.

Results:

- 12 manoeuvres successfully characterised over 6 days.
- Using only 2 telescopes, 4000 observations provided for a total of 384 mins of observation time during EOL operations.
- Additional 444 observations after EOL.
- Successfully fulfilled demanding accuracy requirements by optimizing observation strategy.

gmv.com

Thank you

C. Paulete

cpauleteperianez@gmv.com

A. Gallego

agtorrego@gmv.com

D. Escobar

descobar@gmv.com

GMV Team

Attitude estimation results

- Attitude mode estimation with real MMT9 observations
- Known attitude ephemeris for observation period
- Several attitude modes attempted
- Lowest RMS chosen

RMS error: 0,34

Earth pointing

RMS error: 0,39

Inertial pointing

RMS error: 0,43

