

2023 Clean Space Industry Days

Progress in vision-based navigation technologies for non-cooperative close proximity operations

David REGAD – Lead System Engineer, LMO Marcos Damian PEREZ – Chief Technology Officer, LMO

Starting point

- Previous demonstration missions have been using a combination of sensors
- All but one used markers on the target satellite

Vision: recent progress in machine learning will be an enabler for autonomous rendezvous and proximity operations with uncooperative targets

Technology development strategy

Technology
maturationDIOSSATRL 2 => 416 months

Industry partnerships Proof-of-Concept 1 ESA IOD mission Phase 0/A completed

SAB

In-orbit demonstration Audacity Object detection demo SW

UNIBAP

DIOSSA – Development steps

DIOSSA – Space segment: camera and mock-ups

Camera with representative sensor mounted on custom made bracket

Sensor characterization

First OneWeb mock-up

Final OneWeb mock-up

DIOSSA – Space segment: flight computer

DIOSSA – Space segment: software

SW architecture

SW output

DIOSSA – Ground segment: machine learning training data

Blender

Pangu v1

Pangu v2

Pangu v3

DIOSSA – DNN models: performance tracking

DIOSSA – Lab campaigns: Zero-G lab at Uni of Luxembourg

DIOSSA – DNN models: Best performance

Domain		Synthetic			Lab		
Algorithm version		0.3.1a			0.2.7DE		
Metrics		Target	Measured	Filtered	Target	Measured	Filtered
	Validity ratio	80%	97.7% valid frames	-	(none)	68.9% valid frames	_
	Position error	3% of range (99.73% probability)	7.6% of range	2.14% of range	10% of range (mean value)	5.7% of range	3.8% of range
	Orientation error	3 degrees (99.73% probability)	7.6 deg	4.20 deg	10 degrees (mean value)	12.4 deg	7.2 deg

Technology development strategy

Technology
maturationDIOSSATRL 2 => 416 months

Industry partnerships Proof-of-Concept 1 ESA IOD mission Phase 0/A completed

<u>SAB</u>

In-orbit demonstration Audacity Object detection demo SW

PoC-1 – Mission objectives

Demonstration of the key enabling transport capability of in-orbit automatic rendezvous and docking between two orbital systems

- Consortium of 5 companies
- Phase 0/A (6 months)
- LMO was responsible for proximity operations

LMQ

Proximity System preliminary design

- Centralized architecture with the GNC application collecting the data from the Computer Vision application and AOCS sensors
- Use of monocular cameras only (visible and thermal)
- Lidar as option (for reliability or redundancy, with impact on technical budgets)

Proximity operations concept

Definition of zones and transitions

- In close range, use of visible and thermal monocular cameras for relative position estimation
- In final approach, 6-DoF pose estimation with visible cameras and a light source

Technology development strategy

Technology
maturationDIOSSATRL 2 => 416 months

Industry partnerships Proof-of-Concept 1 ESA IOD mission Phase 0/A completed

SAB

In-orbit demonstration Audacity Object detection demo SW

UNIBAP

Audacity: In-Orbit Demonstration of Object Detection

- Using pre-recorded video of the NAPA-2
- In-house CAD design and synthetic images
- Running application on-board
- SW optimized to cope with limited uplink and processing power

Domain gap

Lessons learned

- 1. Off-the-shelf DNN models are not directly adaptable for flight computers
 - Custom DNN models need to be developed for the selected HW platform
- 2. Addressing the domain gap requires specific methods
 - Parameters tuning and data augmentation are not enough to generalize to different domains
- 3. The concept of operation used for current and past missions cannot be generalized
 - There is a consensus on the use of zones and transitions, but they are too dependent on the characteristics of the mission (size of the serviced vehicle, sensing capability of the servicer, etc.)

Next steps

- 1. In-house development of DNN models and training process
- 2. Simulation and analysis of defined scenarios to adapt and validate the modes and associated performance requirements
- 3. Development of a Safety Assurance approach to guarantee safe proximity operation under any circumstances

Let's have a chat!

David REGAD – d.regad@lmo.space Marcos Damian PEREZ – m.perez@lmo.space

DIOSSA – DNN models: Evolution I_M

LMO Proprietary Information

DIOSSA – Output Filtering

Synthetic trajectory

Lab trajectory

