

Manufacturing using waste from space resources for a circular space economy

<u>Timon Schild^{1,4}</u>, Gwenaelle Aridon², Anthony Lecossais², Melchiorre Conti³, Dennis Harries¹, Kathryn Hadler¹

¹European Space Resources Innovation Centre
²Airbus Defence & Space
³European Space Agency
⁴University of Luxembourg

esric

Context

Space resources and lunar exploration

Image credit: Luc Viatour, CC BY-SA

Powered by: eesa

Long term exploration target is the establishment of a **permanent lunar research outpost**

Requires:

2

- Large amount of construction material and consumables
- High degree of autonomy and resilience
- Efficient use of resources available
- Local and in-orbit refuelling capabilities

\rightarrow Circular economy and use of local resources are essential

October 23

Context Oxygen production from lunar regolith

Objectives End-to-end process from regolith to alloy parts

ISRU process FFC molten salt electrolysis

Description:

Electrochemical process to remove oxygen from metal oxides, yielding pure metals

Current status:

5

- Has been demonstrated to **extract up to 96% of oxygen** present in lunar regolith simulants (Lomax et al., 2019)
- Operational **prototype reactor at ESA-ESTEC**, processing 25g of simulant in 24h

Upcoming developments:

- Investigation of **metal products** recovery and refinement
- Demonstration of end-to-end process with Metal3D
- Next generation prototype at ESRIC by early 2024

Preliminary results Material production

LHS-1 highland regolith simulant feedstock

LUXEMBOURG SPACE AGENCY INSTITUTE OF SCIENCE AND TECHNOLOGY

6

Powered by:

· e esa

Solid material recovered after FFC process

October 23

Preliminary results

Jmm

Powered by:

· e esa

Material characterization (SEM-EDX)

Low magnification SE image of solid product (coarse size fraction)

LUXEMBOURG

Electron Image 1

7

Higher magnification SE image of solid product (coarse size fraction)

Preliminary results Material characterization (SEM-EDX)

8

Average composition of product obtained from LHS-1 feedstock

Local compositions of phases mapped in Al-Si-Ca-Fe system

Conclusion Current findings

- Product mostly composed of Al, Si, Ca & Fe, presence of Mg, Ti & stainless steel
- Ca-rich and Fe-rich phases tend to be separated
- Notable phases include Al₂Si₂Ca, SiFe, Al₃Si₃Fe₂, Si₂Ca, Si, Al
- As little as **3 wt.% residual oxygen** in recovered product

Al-Si alloys can be a target end product

Conclusion Upcoming work

eesa

Conclusion Links between ISRU and clean space

- Materials: Heterogenous mixture of metals, with prevalence of Al alloys
- Environment: Processes must be adapted for in-space operations
- Circularity: Need for closed loop, zero-waste approach

· e esa

Thank you!

References

McKay, D.S., Heiken, G., Basu, A., Blandford, G., Simon, S., Reedy, R., French, B.M., Papike, J., 1991. *The Lunar regolith*, in: Heiken, G., Vaniman, D., French, B.M. (Eds.), *Lunar Sourcebook: A User's Guide to the Moon.* Cambridge University Press, pp. 285–356.

Lomax, B.A., Conti, M., Khan, N., Bennett, N.S., Ganin, A.Y., Symes, M.D., 2020. Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. Planetary and Space Science 180, 104748. <u>https://doi.org/10.1016/j.pss.2019.104748</u>

13