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Introduction

e Orbital Robotic Missions
o significant level of autonomy is required for
future orbital robotic missions
o target orbits LEO, MEO, GEO

o Mission Applications: In-Orbit Servicing and
Debris Removal

e Rendezvous and Proximity Operations

o Rendezvous: Far-range, Mid-range (100’s m
to 10 m), Close-range (< 10 m)

o Proximity Ops require real-time estimation
of a target position and orientation

o Cameras are the preffered sensors for
Vision-based Navigation (VBN)

i
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Deep Learning-based Spacecraft Pose Estimation

Challenges:
% e Sensors: RGB Camera limitations
< a e Data: Simulator dependent
Data § e Algorithm:
é el o Sim2Real or Domain Gap
cencor «; e Testbed:
& o High-fidelity testbed
\Ne

e Deployment:

Testbed o large networks
o network efficiency

Deployment
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DL Frameworks for Spacecraft Pose Estimation

'EBC,RBC
(A) Direct end-to-end approach

Pose estimation

\ Outlier removal /
X PnP solver
— — — — | )
Pose refinement

Spacecraft localisation Keypoint regression Pose computation

(B) Hybrid modular approach
lllustration of different approaches for spacecraft pose estimation.

Pauly, Leo, et al. "A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects.” Acta Astronautica (2023).
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DL Frameworks for Spacecraft Pose Estimation

- Multi-branch architectures
- Variations based on Rotation representation

Direct End-to-end Approach

_ Spacecraft - Multi-stage detectors
Spacecraft " Localisation " - Single-stage detectors
Pose
Estimation :
: v - Regression of keypoint locations
Hybrid . : .
Keypoint - Segmentation-driven approach
Modular . . .
Aobroach Prediction - Heatmap prediction
PP - Bounding box prediction
R Pose - PnP solver
Computation " - Learning-based method

]
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Spacecraft Pose Estimation Datasets
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Dataset Year | Syn Lab Space Spacecraft Resolution I | Range (m) Tools
SEENIC 2022 | 10k 5k - Hubble Telescope | 640x480 | E [20, 45] Blender
SHIRT 2022 | 5k 5k - Tango 1920 x 1200 | G <8 OpenGL
SPARK2-Stream?2 | 2022 | 30k 900 - Proba-2 1440 x 1080 | C [1.5, 10] Blender
COSMO 2022 | 15k - - | COSMO-SkyMed | 1920x 1200 | C | [36, 70] Blender
SwissCube 2021 | 50k - . SwissCube 1024 x 1024 | C [0.1, 1] Mitsuba 2
SPEED+ 2021 | 60k 10k - Tango 1920 x 1200 | G <10 OpenGL
Cygnus 2021 | 20k - 540 Cygnus 1024 x 1024 | C [35, 75] Blender
SPEED 2020 | 15k 305 - Tango 1920x 1200 | G | [3,405] | OpenGL
URSO 2019 | 15k - - Dragon, Soyuz 1080 x960 | C [10, 40] UE 4
PRISMA12K 2019 | 12k - - Tango 752 x 580 G - OpenGL

Spacecraft Pose Estimation: Opportunities and Challenges for future missions
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Domain Gap

 In general, satellite pose estimation models
are trained using synthetic images.

e Leadsto domain gap or Sim2Real problem, Synthetic P
l.e. models trained in one domain (synthetic) 9ap
face a drop in performance when tested on
another (real data)

Data

o . g _ Real Data
o overfitting features specific to training

domain

e« How to achieve domain invariance?
Domain Gap Visualization.
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Domain Gap

 In general, satellite pose estimation models
are trained using synthetic images.

e Leadsto domain gap or Sim2Real problem,
l.e. models trained in one domain (synthetic)
face a drop in performance when tested on
another (real data) overfitting features
specific to training domain

e How to achieve domain invariance?

o Domain Randomization
o Domain Adaptation

o 5
@ T

Domain Randomization.

Kim, T, & Kim, C. (2020). Attract, perturb, and explore:
Learning a feature alignment network for semi-supervised
domain adaptation. In Computer Vision—-ECCV 2020: 16th
European Conference, UK, August 23-28, 2020.
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Domain Adaptation

e DA focus on mitigating the decrease in

algorithms performance on the target
domain for the same task Q

Inter-domain Inter-domain Intra-domain
Discrepancy Discrepancy . Discrepancy

e Supervised and Unsupervised DA

® Labeled target feature

® Unlabeled target feature

e Supervised: access to both source and
target (data + ground truth labels) supervised bomain Adaptation.

(X

Inter-domain
Discrepancy

e Unsupervised: access to source (data +
labels), but only to target (data) during
training

Kim, T, & Kim, C. (2020). Attract, perturb, and explore: Learning a feature alignment network for semi-
supervised domain adaptation. In Computer Vision—-ECCV 2020: 16th European Conference, UK, 2020. ) ) )
Unsupervised Domain Adaptation.
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Supervised Domain Adaptation

Simulation
Images

Real
Images

comcopy  — forward

(

| netwaork

Feature

Extractor ‘
weight fixed)
IETEEETEEE

Pose

Estimator
(weight fixed)

.

Discriminator

—

copied network

|
—

Qutput
6DoF

'| Simulation or Real?

Qutput

-]
Feature :
Extractor J

I
I
I
|
¥

Pose
Estimator

Qutput
6DoF

CNN architecture for Supervised Domain Adaptation. [T]

::!?.

Inter-domain Inter-domain .| Intra-domain
Discrepancy Discrepancy : Discrepancy

® Labeled target feature
® Unlabeled target feature

Supervised Domain Adaptation.

[1] S. Hashimoto et al., “Domain Adaptation for 6-DoF Pose Estimation: Deep Learning with Uncertainty," in 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA: IEEE,
Mar. 2022, pp. 1-12. doi: 10.1109/AER053065.2022.984 3646.
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Unsupervised Domain Adaptation

e Domain Invariant feature learning

o aims to align source and target at feature level, assuming that source and
target come from same distribution

o tries to aligns both domains with a discriminator

e Input Alignment

o aims to align the source to the target domain at input level via generative
adversarial networks

o Self-training / Pseudo-labelling

o utilize target samples to train the model by generating pseudo-labels
o possibility of noisy pseudo-labels

]
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Datasets for Domain Gap: SPEED +

e sunlamp images have extreme surface glows and high contrast shadows due to
direct light

e 1ightbox images are captured under extremely dim illumination conditions

M. Kisantal, S. Sharma, T. H. Park, D. 1zzo, M. Martens and S. D’Amico, "Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results," in IEEE Transactions
on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 4083-4098, Oct. 2020, doi: 10.1109/TAES.2020.2989063.
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Datasets for Domain Gap: SPEED +

Mean pose errors of the top-10 entries evaluated on the 1ightbox and sunlamp images.

Team lightbox Team sunlamp
E; [m] E, [°] Eloe -] E, [m] E, [°] Ejose -]

1. TangoUnchained 0.105 3.187 0.073 1. laval302 0.065 2.728 0.059
2. VPU 0.131 4.577 0.101 2. VPU 0.076 2.828 0.061
SPNv2 [26] 0.150 5.577 0.122 3. TangoUnchained 0.086 4.299 0.090
3. laval302 0.302 6.665 0.165 4. u3s_lab 0.181 6.241 0.141
4. haoranhuang njust 0.180 8.131 0.173 5. haoranhuang_njust 0.163 8.406 0.175
5. u3s_lab 0.333 9.694 0.224 SPNv2 [26] 0.161 9.788 0.197
6. chusunhao 0.205 16.378 0.319 6. bbnc 0.542 21.955 0.465
7. for graduate 0.402 23.666 0.488 7. for graduate 0.455 22.970 0.487
8. Pivot SDA Al & Autonomy Sandbox 0.409 23.918 0.490 8. Pivot SDA Al & Autonomy Sandbox 0.854 36.445 0.766
9. bbne 0.687 24.889 0.531 9. ItTakesTwoToTango 0.473 39.660 0.772
10. ItTakesTwoToTango 0.485 31.094 0.625 10. chusunhao 0.338 43.356 0.815

M. Kisantal, S. Sharma, T. H. Park, D. Izzo, M. Martens and S. D'’Amico, "Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results," in IEEE Transactions
on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 4083-4098, Oct. 2020, doi: 10.1109/TAES.2020.2989063.
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Domain Gap: Solutions

e Adversarial training as a crucial component to bridging the domain gap

e Object detection prior to landmark regression i.e. cropping the predicted 2D
bounding box

o help retain important visual features at far ranges
o otherwise will be lost after image downsizing

e Generating accurate pseudo-labels during self-training (UDA) is critical for
efficient learning

e multitask learning enables robust learning across domain gaps

[ )
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Domain Gap: Alternative Prospects

e Limitations of RGB Sensors

Dynamic Range

Gallego, Guillermo, et al. "Event-based vision: A survey.” IEEE transactions on pattern analysis and machine intelligence 44.1 (2020): 154-180.
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Bridging Domain Gap: Sensor perspective

e Alternate vision sensors and fusion techniques are investigated.

Independent of illumination  Less Sensitive

Hlumination Highly sensitive Rely on emitted radiance High Dynamic Range
Resolution & cost High + Low Low + High Medium (720p) + High
Power Low Low + passive cooling Lower than VIS
Simulation & Lab  Easy + Easy Hard + Hard Medium + Easy

[1] Jawaid, Mohsi, et al. "Towards bridging the space domain gap for satellite pose estimation using event sensing.” 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023.
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Event Camera : Introduction
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e An Event Camera outputs asynchronous events.

e An event is generated each time a single pixel detects an intensity changes value.

Contrast
V = logi(t) threshold

Input signal o

ON ON oN ON

Timestamp | x y | polarity
160979782 | 293 | 100 1
160979789 | 483 | 200 0

t
0 Vol

OFF OFF OFF

W

Output events OFF OFF OFF

e Event Camera advantages

t

o High Dynamic Range (140 dB compared to 60 dB for traditional cameras)

o Low Latency (~ 1ps)
o No motion blur

o Low power consumption (1 mW compared to 1 W for traditional cameras)

Spacecraft Pose Estimation: Opportunities and Challenges for future missions
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Event Camera Dataset

e To investigate Event sensing for Spacecraft Pose Estimation, a new dataset was

created.

Synthetic Real
Sensor resolution  1280x720 1280x720
Dataset size 179,400 (no. of poses) 15,500
No. Trajectories 300 31
No. poses/traj 598 500
Interpolation 80% spline & 20% Helix -
Range 35-12m 35-9m
Range dist. Close, Mid, Far, Limit Close, Mid, Far
Lighting Easy, Hard L1, L2 L3, L4
Rendering Unreal Engine (RGB) -
Event Camera ICNS Emulator Prop. EVK4HD
Background Earth -
Filtering Bbox/Mask Min. event count
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Event Pose Estimation Analysis
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e Metrics

ERr = 2 acos|(q,q)/;

Ep = ER + En.

e Baseline Results on Simple Hybrid DL Framework.

Model | Data  ET Er Ep Data  E Er Ep
R v I I o R R O I S
Syn. Real
Direct | 97.32 4.29 30.43 0.57 | 73.32 5.13 81.13 1.47
Hybrid | 23.98 3.23 6.69 0.15| 17.27 3.34 78.98 1.41

Spacecraft Pose Estimation: Opportunities and Challenges for future missions
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DL frameworks : Summary

e Irrespective of data type or sensor, domain gap is imminent.

e The significance of domain gap and algorithm selection can make high
impact in performance.

e Sensor Fusion will help balance the performance

[ )
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Deployment in Edge Devices

e Real-time inference is key to orbital autonomy
e Edge devices have limited memory, computing resources, and powetr.

o Achieving efficient, real-time NNs with optimal accuracy requires rethinking
the design, training, and deployment of NN models

e Methods to improve NNs efficiency

o Network Pruning

o Knowledge Distillation

o Quantization

o Neural Architecture Search

]
22/28 Spacecraft Pose Estimation: Opportunities and Challenges for future missions Il lII . I “ ‘ S "T



Quantization

e Quantization is the process of converting continuous values to discrete set of
values using linear/non-linear scaling techniques. FP32/FP16 — FP8 / INT8

o Quantization-aware training (QAT) is a fine-tuning process, where the
model is further trained with quantization in mind.

o Post-training quantization (PTQ) is a quantization technique where the
model is quantized after it has been trained.

Pre-trained model ]

v Training data

Quantization ]

Retraining / Finetuning

.

Quantized model

Pre-trained model ] [ Calibration data

v v

I

Calibration

v

Quantization

.

Quantized model

Gholami, Amir, et al. "A survey of quantization methods for efficient neural network inference." arXiv preprint arXiv:2103.13630 (2021).
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Quantization

e Quantization-aware training the model is further trained with
quantization in mind.

{Pre-trained model H Add Q/DQ nodesH Finetune model]—b[Store 'scale’ HQuantize model ’

o QAT aims at computing scale factors during training

o Fine-Tuning: Once the network is fully trained, Quantize (Q) and Dequantize
(DQ) nodes are inserted and further trained for few epochs

o Q/DQ nodes simulate quantization loss

e Keeping performance before and after quantization is critical

[ )
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Improving Quantization

o With current tools, it is straightforward to quantize and deploy different NN
models to INTS8, without losing accuracy.

o software packages (e.g., Nvidia’'s TensorRT, TVM, etc.)

 the appropriate quantization method, identifying sensitive layers, and fine-
tuning your models using QAT

e Hardware and NN Architecture Co-Design: useful for FPGA deployment,
as one can explore many different possible hardware configurations

e changing the width of the NN architecture could reduce/remove
generalization gap after quantization.

e Quantized traning to accelerate NN training with half-precision

25/28 o with INT8 Erecmon the training can become unstable and dlverg““i I“ ‘ SIT
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Summary

Algorithm: - Domain Adaptation Methods
Sim2Real orDomain Gap - Multi-task learning

S - Potential for Neuromorphic Vision
Sensor limitations , ,
- Sensor Fusion with RGB cameras

- Quantization aware-training
Deployment in Edge Devices - Network Pruning
- Neural Architecture Search
- High-Fidelity Simulation

Data : : . :
- Closing Domain Gap via simulation tools

[ )
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Thank you for your attention!
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