

A Multiscale Heating Correction Code for Space Debris Demise Simulations

19th October 2023

Nathan Donaldson (FGE), David Bolton (FGE), Jim Merrifield (FGE), James Beck (BRL), Michael Probyn-Skoufa (FNC)

CRITIC overview

- The CRITIC software is designed as a wrapper for reentry simulations run using the ESA DRAMA suite.
- CRITIC implements local length scale corrections to aerothermal calculations output by DRAMA's SESAM (Spacecraft Entry Survival Analysis Module) re-entry simulator.
- CRITIC has been employed in this de-risk activity to generate database files that can be read by the FNC prototype software.

CRITIC overview

- Thermal scaling factors are tabulated using $\ln\left(\frac{length}{width}\right)$ and $\ln\left(\frac{length}{height}\right)$
- These factors are interpolated based on each component or compound shape's bounding box.
- Component scaling factors relative to their parent compound shapes are also calculated.
- The factors are then applied to the aerothermal heating of SESAM simulations.

CRITIC overview

- CRITIC initially runs a single SESAM simulation.
- Breakup and impact events are logged, and thermal scaling factors are calculated based upon resulting fragment sizes.
- SESAM simulations are then recursively rerun using successive breakup/impact/demise conditions as inputs.
- This process is repeated until all components have either demised or impacted.

Verification and testing

- CRITIC simulations have been performed both with and without scaling enabled.
 - This facilitates verification that thermal factors are being calculated and applied correctly.
 - Local length scale corrections to component heating should be demonstrated by lower heating to smaller sub-components.
 - As such, the scaled sub-panels in subsequent test cases should demonstrate *lower heating* with CRITIC scaling enabled.

Initial test cases

Belstead

- The first test case evaluated represents a cuboidal satellite analogue.
- An undemisable variant of AI-7075 is applied so that all components survive until ground impact.
- The analogue comprises:
 - A central ballistic sphere
 - 3 rectangular lateral panels
 - 2 square top/bottom panels
 - A lateral panel split into two halves at its centreline (always attached to one another in present examples)

Initial test cases

Belstead

 The following scenarios have been evaluated using the halved compound panel:

<u>No breakup</u>

No breakup occurs and all components remain attached to one another throughout the re-entry trajectory.

- Set temperature breakup

Components of interest separate from the main object when they reach a predetermined temperature (1000 K).

Initial test case - results

- Results of scaled "no breakup" simulations performed using un-demisable component joints.
- Reduced thermal transport to the sub-panels (ym_bot, ym_top) is evident compared to the full-size panels (yp).

Initial test case - results

- Results of the "set temperature breakup" simulations performed using a child release temperature of 1000 K are shown.
- With CRITIC scaling, the smaller panels (ym_bot, ym_top) reach their release temperature at a lower altitude than without, indicating the expected behaviour.

Initial test case - results

- The unitary panel (yp) also receives slightly lower heating with CRITIC on.
- This is because the parent object heating is slightly lower than the shaded individual panel heating (~10% lower).

Revised test cases

- A revised test case was defined based featuring an unevenly split lateral panel to better demonstrate the impact of CRITIC corrections.
- The other components and structure of the original test case were retained.
- CRITIC is once again shown to produce good agreement for split panels compared to the existing DRAMA heating method.

Revised test cases

- Unevenly split compound panels have been used to extend verification activities.
- The evenly split panel in the previous test case produces the same output for both halves.
- Simulations featuring an uneven split allow scaled heating to be further examined wrt. relative component scales within compound shapes.

Revised test cases

- The split panel in the revised test case is divided into two sections, one 2.5m high and another 0.5m high.
- The separation temperature for the split panel compound was set to 1000K as in previous simulations.
- As such, the panels are unevenly heated and separation from the main object occurs later in the trajectory.

Belstead

- Results of "uneven panel" simulations performed using a child release temperature of 1000 K are shown.
- Significant overestimation of heating to the smaller of the two panels (ym_bot) can be seen in the uncorrected results, leading to earlier separation.

Belstead

 With CRITIC scaling, the temperatures of both split panels (ym_bot, ym_top) agree well throughout their trajectories.

Belstead

- Results of a second set of "uneven panel" simulations wherein the small panel was further reduced in size to 1/30th that of the full panel are shown.
- Once again, significant overestimation of heating to the smaller of the two panels (ym_bot) is present in uncorrected results, leading to earlier separation.

Belstead

- With CRITIC scaling, the temperatures of both split panels (ym_bot, ym_top) agree reasonably well throughout their trajectories.
- The discrepancy in temperature history in this case is due to the limited resolution of SESAM's shading algorithm and the (extremely) small proportions of the ym_bot panel.

- The heating predictions generated by SESAM become less accurate as the detail of the spacecraft model in increased.
- CRITIC compensates for these overestimations in box primitives by correcting the heating via a scaling factor.
- Excellent agreement in temperature history is obtained between panels of various sizes when CRITIC scaling is applied.

- These length scale modifications mitigate a potential pitfall with the present component-based approach of DRAMA, namely:
 - Greater detail in compound shapes leads to higher heating.
 - The danger is that users associate a higher level of detail with less conservative analysis
 - In actual fact, more detail can lead to lower accuracy.
 - The results shown here should motivate future updates to mitigate this potential pitfall.

- In compound shapes whose components are of approximately equal size, the heating error is around 20-30%
 - This is in line with the heating uncertainties applied in the recent PADRE activity (Probabilistic Assessment of Destructive ReEntry).
 - This applied uncertainty was one of if not the most significant aspect with respect to the statistical spread of output metrics (such as casualty risk).
 - This demonstrates the importance of removing this systematic inaccuracy.
 - The problem is more extreme for lager separations in length scale.

- The present method employed in CRITIC involves significant human input to identify cases where length scale adjustment is necessary.
 - The automation of this process will require significant thought in terms of the identification of shape recognition algorithms.
 - The appropriate scaling is not known for all compound shapes.
 - We have restricted ourselves to boxes for study tractability.
 - There is a great deal more work to do in order for this method to be generally applicable.

Future work

Belstead

- In the near future, we intend to further demonstrate the utility of CRITIC by extending the simulations presented here
- The code will be used to analyse the heating of SAR arrays on spacecraft in LEO such as those mounted on the Sentinel-1 or Harmony spacecraft
- The current capabilities of CRITIC lend themselves well to analysing the thermal environment experienced by the various cuboidal structures typical of SAR arrays
- These have previously been sources of significant uncertainty in re-entry and demise simulations

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1sar/sar-instrument/description

Thank you Questions?