

DRACO mission phases A-B1 outcomes and way forward

Paolo Minacapilli^a, Saul Campo^a, Mercedes Pavia^a, Gabriele De Zaiacomo^a, Andreea Burlou^a, Santiago Molina^a, Angel Naranjo^a, Carmen Fuentes^a, Andrea Fabrizi^a, Andrea Pizzetti^a, Andrés Caparrós^a, Biagio D'Andrea^a, Guillermo Asensio^a, Guillermo Silva^a, Stijn Lemmens^b, Beatriz Jilete^b, Benjamin Bastida Virgili^b, Simone del Monte^c, Amandine Denis^c, Bernd Helber^c, Eddy Constant^d, Gauthier Brives^d, Martin Spel^d

(a) Elecnor Deimos, (b) European Space Agency, (c) von Karman Institute for Fluid Dynamics, (d) R.Tech

Contents

- Project framework and consortium
- System and mission concept
- Sensors selection and high temperature harness
- Objects of Interest selection
- Design challenges
- Preliminary mission analysis
- Simulations in DRAMA and PAMPERO
- DRACO Mission way forward and conclusions

Project Framework and Consortium

System Concept

Sensors data collected by DDCU and transmitted to the CAPSULE.

Dry mass of at least 100 kg
Wet mass of maximum 200 kg
Representative of LEO satellites

Instrument*: includes the capsule, the DDCU and the sensors (thermocouples, strain gauges, cameras).

Host platform: service module for the Instrument.

Objects of Interest (Ool): collection of components to be observed while demising during the destructive re-entry.

Design Challenges

Capsule on top (with thermal protection) \rightarrow "easier" capsule release

Components inside TPS box need to survive to the re-entry.

Design challenges:

- DDCU and DDCU-capsule connection need thermal protection
- Capsule separation mechanism shall survive the re-entry to guarantee safe capsule release
- Temperature reached by wires outside the "box with TPS" \rightarrow need high temperature cables
- Cut-outs on TPS may cause its failure

Intrusive Sensors Selection

Optical Sensors Selection

Harness Thermal Protection

Sensors Harness \rightarrow Extreme temperatures while on the re-entry. Compatibility with gauge and thermocouples diameters.

Capsule-DDCU Harness \rightarrow Lower temperatures within the TPS, but high-temperature wiring could be used to increase the reliability of the system.

Harness Connectors \rightarrow Thermal inertia will help keep the temperature of the connectors under an acceptable threshold thus allowing for standard market ones to be used (DDCU side, inside TPS box).

A **requirement for the temperature of connectors** is key, modelling the conduction heat transfer from wires outside the TPS box to connectors at DDCU side.

Objects of Interest Selection

SCIENTIFIC RETURN

Based on the number and variety of objects, their representativeness for small satellites, and the presence of D4D objects.

COST SCORE

It depends on the market (selection from European market) and the choice to have multiple objects for the same item.

COMPATIBILITY

of the Ools with the sensors (also if the objects can be easily measured by the sensors) and positioning with respect to the cameras.

- Composite propellant tanks
- o SADM
- Mirrors samples
- Magnetorquers (incl D4D)
- Reaction wheels (incl D4D)
- Star trackers
- Batteries
- Gyroscopes
- Host Structure
- 0 ...

Location of OoI is decided to ease their presence in the FOV of cameras and ensure its demise is properly monitored.

Mission Analysis: orbital phase

Assuming VEGA-C mission profile for the preliminary mission analysis.

A reference orbital phase was propagated by DEIMOS to reproduce a typical VEGA-C mission (SSO @500 km).

Unpopulated regions are identified as target disposal regions: SPOUA and IOUA.

Typical VEGA-C SSO mission (VEGA-C UM) AVUM+ boosts (VEGA-C UM) Reference orbital propagation (DEIMOS)

Mission Analysis: re-entry orbit

Dependance on the selected launcher and associated mission profile

<u>Baseline mission ground track \rightarrow :</u>

- Flight Path Angle (FPA) at Entry Interface Point (EIP) of -2.3° (guaranteed by AVUM)
- Indian Ocean re-entry

Backup options:

- FPA at EIP of -1.5° → shallower re-entry, more representative for uncontrolled re-entry
- SPOUA re-entry

Assessment of the Separation Manoeuvre

- A parametric analysis of the separation manoeuvre was run in order to support the definition of the DRACO's separation mechanism.
- Representative separation ΔV considered up to 1 m/s
- Two separation strategies: axial and lateral

The separation maneuver has a minor impact on the entry conditions:

- Negligible impact on the entry FPA, heading, and velocity.
- Changes in the EIP location in the order of tens of km.

Re-entry Analysis: On-ground Casualty Risk

The re-entry simulation campaign consists of the following analysis:

- Nominal entry conditions for the reference mission: controlled re-entry baseline and back-up case
 - The resulting **on-ground risk for the nominal controlled cases is 0**, since the surviving fragments are targeting an unpopulated area of the Indian Ocean.
- Dispersed entry conditions for the reference mission: controlled re-entry baseline and back-up case
 - The casualty and fatality risk associated with the **dispersed controlled re-entry is equal with 0** for all the cases.
- Non-nominal entry conditions: uncontrolled re-entry
 - For the uncontrolled re-entry case the risk is 1.662x10-5 being compliant with the risk requirement of 10-4.

Cesa DRACO DRACO A preliminary mission robustness assessment was carried out to demonstrate that the potentially surviving fragments footprint does not extend over inhabited regions.

Simulations in DRAMA and PAMPERO

Evaluated the preliminary impact on the demisability of:

- Re-entry orbit and FPA at EIP
- Ballistic coefficient
- State at EIP (tumbling vs fixed attitude)
- Internal panels in titanium vs carbon-carbon vs aluminium
- Spacecraft configuration

Mission way forward and conclusions

Mission level

 Effect of LUS injection accuracy on the demisability behavior, both attitude (e.g., tumbling) and positioning

System level

- Ool iterative selection and accommodation, including D4D components (e.g., joints, magnetorquers, tanks, RWs, SADM, etc.)
- Sensors distribution over Ool and structure, cameras placement and thermal protection
- Consolidation of internal structure material to exclude early termination of the scientific window
- Thermal protection system design for Instrument survivability
- Capsule release mechanism design

Thank you for the attention!

DRACO mission phases A-B1 outcomes and way forward

Paolo Minacapilli^a, Saul Campo^a, Mercedes Pavia^a, Gabriele De Zaiacomo^a, Andreea Burlou^a, Santiago Molina^a, Angel Naranjo^a, Carmen Fuentes^a, Andrea Fabrizi^a, Andrea Pizzetti^a, Andrés Caparrós^a, Biagio D'Andrea^a, Guillermo Asensio^a, Guillermo Silva^a, Stijn Lemmens^b, Beatriz Jilete^b, Benjamin Bastida Virgili^b, Simone del Monte^c, Amandine Denis^c, Bernd Helber^c, Eddy Constant^d, Gauthier Brives^d, Martin Spel^d

(a) Elecnor Deimos, (b) European Space Agency, (c) von Karman Institute for Fluid Dynamics, (d) R.Tech

