ESA Clean Space Industry Days 2023

SEEDS tool a Simplified Ecodesign Evaluation for new Development in Space

DEFENCE AND SPACE

Perrine CAU Prisca ALLAGUY-SALACHY Morgane POUZIOUX TESMR Advanced Projects in Engineering (Mechanical Thermal Propulsion)

Export Control Information concerning this document's content

Airbus Amber

The 2 sections below contain information related to dual-use regulations.

For Military/ITAR data related to this document's content, please check with Export Control manager for appropriate text to include.

Copy tick image(🔟) over applicable check boxes for both European and US regulations, and fill in XXXX and YYYY when applicable.

1/ European regulation controlled content

Country of origin for controlled data in this document:							
\boxtimes	France		Germany	Sp	United Kingdom		

Does not contain national dual-use controlled data.

These commodities, technology or software are controlled by the European Union in accordance with dual-use regulation 428/2009 under classification [XXXX]. (See applicable export license information in Dispatch Note)

2/ US Regulation controlled content

Does not contain US origin EAR or ITAR controlled data.

These commodities, technology or software are exported in accordance with the United States Export Administration Regulations. Diversion contrary to U.S. law is prohibited. These commodities, technology or software are controlled under ECCN [YYY]. (See applicable export license information in Dispatch Note)

To define a methodology to estimate the environmental impact of a product from its low level of maturity without applying a formal and complex life cycle assessment (LCA), to monitor the evolution of indicators and to guide the decisions with respect to sustainability during the design phase for Mechanical and Thermal Products.

Fostering Ecodesign in innovation teams to enable fast application, experimentation and creation of new sources of value related to sustainability into mechanical and thermal developments.

Airbus Proprietary and Confidential

Airbus Amber

SEEDS - Study guidelines Simplified Ecodesign Evaluation for new Development in Space

Airbus Amber

A methodology and tool :

- Used by the designer in the advanced project team in Engineering (Mechanical Thermal Propulsion)
- Easy-to-use to save time and money
- Require as little inputs as possible
- Allow the designer to not use the lifecycle assessments (LCA) and to evaluate both product and associated development plan
- Display the accuracy of the study/indicators results

Main goals

- Output ecodesign indicators to be used during trade-offs and development as decision support
- Progressive and dynamic tool to monitor the evolution of the ecodesign indicators

Progress of the study supported by CNES

Airbus Amber

AIRBUS

SEEDS - Simplified Ecodesign Evaluation for new Development in Space

Airbus Proprietary and Confidential

State of the art - Bibliography

AIRBUS

SEEDS - Simplified Ecodesign Evaluation for new Development in Space Airbus Proprietary and Confidential

Hot spots Standard EO Platform Study

TO Sin Ecc	OL naPro (v9.0) software binvent v3.3	Scoping Quality, Data & Tool	Mass	Global Warming (kg eq CO2)	*Global environmental impact	Ratio (Impact / Mass)		
A + B	Test Concept Definition	Number, type and level of tests –						
C + D	Tests Electrical power Harness Data handling Propulsion	Energy consumption (electricity and nitrogen) Production of structural elements of Germanium wafer Presence of PTFE Electronic circuits = presence of gold High mass contribution						
и и								
*Ave	* Average contribution to 18 environmental impact indicators							

SEEDS - Simplified Ecodesign Evaluation for new Development in Space Airbus Proprietary and Confidential

Selection of the indicators (2/2) : from standard LCA list

LCA Standard environmental impact indicators list (18)

	Environmental impact indicator	Unit	LCIA method		
3. Climate change : CO2 emission	Climate change	kg CO2 eq	For all life-cycle phases except launch event: baseline model of		
	Ozone depletion	kg CFC-11 eq	For all life-cycle phases except launch event: Steady-state ODPs 1999 as in WMO assessment		
1. Hazardous material	Human toxicity, non-cancer effects CTUh		USEtox		
and substance	Human toxicity, cancer effects	CTUh	USEtox		
	Particulate matter	kg PM2.5 eq	ReCiPe		
	Ionizing radiation HH	kBq U235 eq	ReCiPe		
	Ionizing radiation E (interim)	CTUe	ReCiPe		
	Photochemical ozone formation	kg NMVOC eq	ReCiPe		
	Acidification	molc H+ eq	CML2002		
	Terrestrial eutrophication	molc N eq	ReCiPe		
	Freshwater eutrophication	kg P eq	ReCiPe		
	Marine eutrophication	kg N eq	ReCiPe		
	Freshwater ecotoxicity	CTUe	USEtox		
	Land use	kg C deficit	ReCiPe		
2. Critical Raw Material	Mineral, fossil & ren resource depletion	kg Sb eq	ReCiPe		
	Marine ecotoxicity	kg 1,4-DB eq	CML2002		
4. Circularity	Metal depletion	kg Fe eq	ReCiPe		
	PRENE	MJ	Ecoinvent, Cumulative energy demand		

Product tree simplification methodology

Airbus Amber

SEEDS - Simplified Ecodesign Evaluation for new Development in Space Airbus Proprietary and Confidential

SEEDS tool architecture

SEEDS user interface in Excel

Description	Describe the functional unit of the assembly	Mast				
	Start the study Name the product assemb	Tot ly Mast	tal mass (taken 10 into account)	0 kg	Number of fligth models	1

The user will have to fill 3 separate modules to enter all the project information : Elementary Parts, Product Assembly and Development Plan (work office, analysis, breadboards/EM, tests)

MODULE 1	Elementary part / Sub-assembly					
Name the sub-assembly or elementary part		Total mass	kg	Number of parts		
Existing element or New element Materials	Manufacturing process	Surface treatment	Transportation	Assembly process		Review the inventory
MODULE 2	Product assembly	reatment	Transportation]		
MODULE 3	Development plan	nulations	Tests			

SEEDS : a simplified ecodesign assessment tool

Airbus Amber

SEEDS is developed within a Mechanical and Thermal Advanced Projects team and aim to offer simplified assessment of the environmental impact of a future product including both its definition and its development plan.

AIRBUS

SEEDS - Simplified Ecodesign Evaluation for new Development in Space Airbus Proprietary and Confidential

Thank you, questions ?

This document and all information contained herein is the sole property of Airbus. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the expressed written consent of Airbus. This document and its content shall not be used for any purpose other than that for which it is supplied. Airbus, it's logo and product names are registered trademarks.

<u>Contact</u>: Perrine CAU

TESMR - Advanced Projects and Robotics

Airbus Defence & Space - Toulouse

T:+33 (0)5 62 19 72 19

M : +33 (0)6 35 63 81 56

E:perrine.cau@airbus.com

© Copyright Airbus (TESMR 2023 / SEEDS - Simplified Ecodesign Evaluation for new Development in Space)

