28–29 Nov 2023
European Space Research and Technology Centre (ESTEC)

Exploring the Latest High-Level Synthesis Results with Bambu: Insights from the HERMES Project's Use Cases

Fabrizio Ferrandi, Claudio Barone, Serena Curzel, Michele Fiorito, Giovanni Gozzi

Politecnico di Milano, Italy,

Outline

- Introduction
- Bambu HLS
- Bambu extensions
- Conclusion

HERMES project

- H2020-funded project started in March 2021
- It aims at validating and evaluating a state-of-the-art rad-hard FPGA according to the standards of the European Space Components Coordination (ESCC), and at integrating design and manufacturing technologies needed to deliver high-reliability applications running on radiation-hardened integrated circuits
- Consortium is composed by
 - NanoXplore, France,
 - Politecnico di Milano, Italy,
 - Fent Innovative Software Solutions FentISS, Spain,
 - Thales Alenia Space SAS, France,
 - STMicroelectronics Grenoble SAS, France,
 - Airbus Defence And Space SAS, France

Bambu HLS

- HLS tools simplify the implementation of accelerators on FPGA
- HLS starts from high-level languages (C/C++)
 - Optimizes the intermediate representations
 - Allocates resources
 - Schedules operations
 - Binds them to the resources
 - And generates RTL descriptions for synthesis tools

The increased performance offered by FPGAs is made available also to software developers that do not have hardware design expertise

Bambu: an example of modern HLS tools

- Open-source HLS tool developed at Politecnico di Milano (Italy)
 - Front-end Input: interfacing with GCC/CLANG-LLVM for parsing C code
 - Complete support for ANSI C (except for recursion)
 - Support for pointers, user-defined data types, built-in C functions, etc...
 - Source code optimizations
 - may alias analysis, dead-code elimination, hoisting, loop optimizations, etc...
 - Target-aware synthesis
 - Characterization of the technology library based on target device
 - Verification
 - Integrated testbench generation and simulation
 - automated interaction with Verilator, Xilinx Xsim, Mentor Modelsim
 - Back-end: Automated interaction with commercial synthesis tools
 - FPGA: Xilinx ISE, Xilinx Vivado, Altera Quartus, Lattice Diamond, NanoXplore
 - ASIC: OpenRoad (Nangate 45, ASAP7)

Bambu: front-end

Bambu: middle-end

Bambu: back-end

Bambu – NX integration

- Seamless integration between Bambu and Impulse from NX
 - automatic generation of backend synthesis scripts
- Bambu IP resource library characterized with respect to rad-hard NX FPGAs
 - Resource occupation and latency under different design constraints
 - Automatically performed with PandA Eucalyptus tool

Bambu – NX integration

- Performance estimation essential for
 - Aggressive scheduling
 - Pipelining
 - Code transformations
- Bambu IP library customized with respect to
 - DSPs
 - NG-ULTRA fabric True Dual Port RAMs

Bambu – NX integration

 Added support for NanoXplore radiation-hardened FPGAs with device-specific RTL component library characterization for:

```
    NG-MEDIUM (nx1h35S)

                                                                           <cell>

    NG-LARGE (nx1h140tsp)

                                                                             <name>fp plus expr FU 0 32 32 100</name>
                                                                             <attribute name="area" value type="float64">649</attribute>
                                                                             <attribute name="REGISTERS" value type="float64">194</attribute>
• NG-ULTRA (nx2h540tsc)
                                                                             <attribute name="SLICE LUTS" value type="float64">457</attribute>
                                                                             <template name="fp plus expr FU" parameter="0 32 32 100"/>
                                                                                                                                        on timestamp>
                                                           <cell>
                                                             <name>fp plus expr FU 0 32 32 100</name>
                                                             <attribute name="area" value type="float64">649</attribute>
                                                             <attribute name="REGISTERS" value type="float64">194</attribute>
                                                             <attribute name="SLICE LUTS" value type="float64">457</attribute>
                                        <cell>
                                                                                                                    ization timestamp>
                                         <name>fp plus expr FU 0 32 32 100</name>
                                         <attribute name="area" value type="float64">638</attribute>
                                         <attribute name="REGISTERS" value type="float64">150</attribute>
                                         <attribute name="SLICE LUTS" value type="float64">464</attribute>
                                         <template name="fp plus expr FU" parameter="0 32 32 100"/>
                                         <characterization timestamp>2022-05-19T10:41:00</characterization timestamp>
                                         <operation operation name="plus expr" commutative="1"</pre>
                                                supported types="REAL:32" pipe parameters="100" cycles="2"
                                                initiation time="1" stage period="19.08899999999999"/>
                                       </cell>
```

Use Cases

- HERMES project is validating the Bambu HLS tool through typical space use cases
 - image and vision processing algorithms,
 - software-defined algorithms,
 - artificial intelligence applications

- Added support to AXI4 master and AXIS interfaces
 - Easier integration with ARM processor on the NG-ULTRA board
 - Easy way to integrate existing IPs
 - Automatic generation of AXI testbench supported
 - Memory latency can be configured
 - Unaligned accesses are supported
 - AXI4 burst transactions supported

	AXI4 Memory Copy	AXI4 Memory Read
LUTS	1072	276
Registers	910	142
Frequency	114 MHz	189.43 MHz

```
#pragma HLS_interface a m_axi direct
#pragma HLS_interface b m_axi direct
int __attribute__((noinline)) vector_copy_plus(int* a, int* b, int elem_number)
{
    for(int i = 0; i < elem_number; i++)
    {
        b[i] = a[i] + 1;
    }
    return b[0];
}</pre>
```

```
#pragma HLS_interface data m_axi direct
int read(int * data)
{
   return *data;
}
```

- Support for caches on AXI interfaces
 - Customizable cache and line size
 - Support for different write policies
 - Support for associative caches
 - Support for different replacement policies
 - Support for larger AXI xDATA signal size
 - Support for pipelined write transactions
 - Automatic cache flush at the end of the computation
 - Includes simulation-only hit/miss counters

- C++ FIFO interface support:
 - ac_channel<T>
 - hls::stream<T>

Standard verification flow

Starting point

- Expected result
 - Verified software application with verified hardware-accelerated kernel

Standard Verification flow

- Testbench built as unit testing module
- Kernel I/O test file generation
- Error-prone
- Separated from use case application

Kernel Testbench

Bambu verification approach

- 1. Standard verification flow is now supported even by Bambu
- 2. Bambu additional verification approach

- Application instrumented to compare software and HW execution using the original application
- DPI-C interface used to connect the SW and the HW worlds

Integrating ML-design flow in Bambu

- Research ongoing on DSLs to synthesize accelerators for machine learning-based inference.
- We did some experiments with SODA-OPT framework
 - Aiming at optimizing one of the TAS use-cases.
- SODA-OPT jointly developed by PNNL, Northwestern University and Politecnico di Milano

ML Model MLIR Kernel MLIR Host Code Code Analysis & Operations to Runtime Low-Level Low-Level FPGA or Host Executable

High-Level Framework

Serena Curzel, Nicolas Bohm Agostini, Vito Giovanni Castellana, Marco Minutoli, Ankur Limaye, Joseph B. Manzano, Jeff Zhang, David Brooks, Gu-Yeon Wei, Fabrizio Ferrandi, Antonino Tumeo: End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators. IEEE Trans. Computers 71(12): 3074-3087 (2022)

SODA-OPT: Frontend and High-Level IR

- SODA-OPT: Search, Outline, Dispatch, Accelerate frontend optimizer "generates" the SODA High-Level IR
- Employs and embraces the MLIR framework
 - MLIR: Multi-Level Intermediate Representation
 - Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
 - Several architecture independent dialects (Linalg, Affine, SCF) and optimizations
- Interfaces with high-level ML frameworks through MLIR "bridges" (e.g., libraries, rewriters)
- Defines the SODA MLIR dialect and related compiler passes to:
 - Identify dataflow segments for hardware generation
 - Perform high-level optimizations (dataflow transformations, data-level and instruction-level parallelism extraction)
 - Generate interfacing code and runtime calls for microcontroller

https://gitlab.pnnl.gov/sodalite/soda-opt

MNIST example

	NG-Ultra embedded
LUTS	4627
Registers	5714
Frequency	45.7 MHz
DSP	54
MEM	34
cycles	169,649

- 8-bit quantized
- Tensorflow 2.15
- Clang 18
- MLIR based design flow

Google Colab notebook

Conclusion

- FPGAs are very versatile and suitable for many markets
- Integrating HLS will improve productivity
- Raise the level of abstraction to develop rad-hard FPGA-based applications
- Raise the Technology Readiness Levels (TRL) of the Bambu HLS tool

Questions

HERMES PROJECT – H2020

Qualification of High-pErformance pRogrammable Microprocessor and dEvelopment of Software ecosystem

https://www.hermes-h2020project.eu/

https://panda.dei.polimi.it

https://github.com/ferrandi/PandA-bambu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101004203