
5th NanoXplore BRAVE days

Politecnico di Torino – Aerospace, Safety and Computing Lab – Dipartimento di Automatica e Informatica

Design Techniques for Multi-Core Neural Network

Accelerators on Radiation-Hardened FPGAs

Andrea Portaluri, Sarah Azimi and Luca Sterpone

▪ The computational power and data transfer capabilities required for modern deep

space applications have drastically grown

▪ Recent rad-hard technology improvements blocks have unlocked a lot of potential

applications, breaking through the performance limits of these devices

▪ High-performance block RAMs (BRAMs)

▪ Digital Signal Processing (DSP) blocks

▪ Acceleration of Convolutional Neural Networks (CNNs) and soft processors might now be

implemented in the programmable logic of most of these rad-hard FPGAs

2

Motivations

4

▪ Evaluate the feasibility of implementation and timing performance optimization of an

accelerator for convolution running on the r-VEX Soft Processor

▪ Assembly code for the VEX Instruction Set Architecture (ISA) has been developed in

order to execute

▪ Convolutional products

▪ Rectifier Linear Unit (ReLU)

▪ Max Pooling

▪ Single-core and Multi-core solutions for parallel computations have been

implemented on NG-medium

▪ Evaluate the trade-off between performances and the number of cores

Goal

6

▪ Very few works have focused on the feasibility and implementation of Machine

Learning accelerators for rad-hard FPGAs

▪ CAD tools (placement and routing) and architectural data are strategic

▪ Cluster-oriented programmable logic with tight placement constraints.

NanoXplore FPGAs and Machine Learning

Overall Architecture of NG-MEDIUM Programmable Logic

7

▪ Reconfigurable VLIW Example (r-VEX) is a Very-Long Instruction Word reconfigurable

processor developed by the University of Delft

▪ Number of registers, ALUs, memory sizes and multipliers are parametric

▪ The VEX architecture works as AI Engine control unit based on VLIW processors

Convolution in VEX Assembly

Instructions are
directly coded into
the VHDL through

Assembly
5 types of instruction

packed in syllables of
4 (parametrizable)

Scheme of the r-VEX and its instruction set

8

▪ AlexNet is a very efficient CNN for handwritten character recognition containing

layers of

▪ 2D convolution

▪ Max Pooling

▪ ReLU activation

▪ A squared input image is fed into a series of convolution products, Max Pooling, and

activation in order to return a probability of that image being a class

Convolution in VEX Assembly

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Input: image[N][N]

Load image from Data Memory:

 1: while branch_col_register do

 2: while branch_row_register do

 3: mov image[i][j], gen_register j+N*i

 4: add 1, row_register

 5: cmpeq 1, branch_row_register

 6: add 1, col_register

 7: cmpeq 1, branch_col_register

 8: goto Convolution

Convolution:

 8: while branch_col_register do

 9: while branch_row_register do

10: execute convolution in row_register, col_register

11: add 1, row_register

12: cmpeq 1, branch_row_register

13: add 1, col_register

14: cmpeq 1, branch_col_register

15: goto Max Pool

Max Pool:

16: while branch_col_register do

17: while branch_row_register do

18: max gen_register i, gen_register i+1

19: add 1, row_register

20: cmpeq 1, branch_row_register

21: add 1, col_register

22: cmpeq 1, branch_col_register

23: goto ReLU

ReLu:

24: while branch_col_register do

25: while branch_row_register do

26: max gen_register i, 0

27: add 1, row_register

28: cmpeq 1, branch_row_register

29: add 1, col_register

30: cmpeq 1, branch_col_register

8

▪ Assembly equivalent of the convolutional steps has been written and coded into the

instruction memory of the r-VEX

Convolution in VEX Assembly

Layer Input Stride Padding Filter Output

Conv.

Layer 1
12 x 12 1 1 3 x 3 12 x 12

Max

Pool 1
12 x 12 0 1 2 x 2 11 x 11

Conv.

Layer 2
11 x 11 0 1 3 x 3 9 x 9

Max

Pool 2
9 x 9 0 1 2 x 2 8 x 8

Implemented part of AlexNet CNN
Parameters of the implemented net

9

NG-MEDIUM implementation

▪ NanoXplore NG-MEDIUM chip has been the target of the analysis

▪ 3 different designs have been implemented varying the number of r-VEX cores

▪ A USB-to-UART bridge has been used to read serial data from a UART VHDL module

implemented along the design

General Registers [#] 64

Branch Registers [#] 8

ALUs [#] 4

Multipliers [#] 2

Syllable-Issues [#] 4

Data Memory [kB] 32

Design 4-LUT DFF
Carry

Logic
DSP BRAM

1-core
6,098

(19%)

1,901

(6%)
298 (4%) 3 (3%) 4 (8%)

2-core
11,714

(37%)

3,801

(12%)
596 (8%) 6 (6%) 8 (15%)

3-core
17,946

(56%)

5,703

(18%)
894 (12%) 9 (9%) 12 (22%)

Table III. Parameters of the r-VEX Table IV. Resources utilization on NG-MEDIUM for the designs

10

Experimental Analysis Flow

NanoXplore Design Flow

r-VEX

Processor

• Transition Delay Analysis

• Data Delay Analysis

• Placement Constrained

Data Delay

SDF report, STA

reports, ...

Static Timing

Analysis

11

Experimental Results

▪ The Standard Delay Format (SDF) analysis allows to estimate transition timing delays

Design
0 → 1min

[ns]
0 → 1max

[ns]
1→ 0min

[ns]
1→ 0max

[ns]

1-core 2.278 2.378 2.278 2.378

2-core 2.497 2.601 2.497 2.601

3-core 2.537 2.643 2.537 2.643

Design
0 → 1min

[ns]
0 → 1max

[ns]
1→ 0min

[ns]
1→ 0max

[ns]

1-core 2.742 2.827 2.742 2.827

2-core 2.801 2.922 2.801 2.922

3-core 2.905 2.985 2.905 2.985

Design
0 → 1min

[ns]
0 → 1max

[ns]
1→ 0min

[ns]
1→ 0max

[ns]

1-core 6.605 6.667 6.605 6.667

2-core 6.587 6.646 6.587 6.646

3-core 6.683 6.743 6.683 6.743

▪ Internal Routing: routing resources into the

same tile

▪ General Routing: routing resources for inter-tile

communication

▪ Low-Skew Routing: routing resources for

distribution of global signals

Delays seem to increase as the
placement spreads in the

programmable logic

The delay differences are less
than 1% of the clock period (40

ns)

12

Experimental Results

▪ Through the data delay analysis, the 10 worst routing paths in terms of timing have

been evaluated

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10

D
a

ta
 D

e
la

y
 [

n
s]

Path ID

1-core

2-core

3-core
4
.7

4
2

3
.6

2
0

Again, resource

utilization (and number
of cores) affects

negatively delays of
nets

2-core and 3-core
designs delays are

comparable with clock
period

Design
Max Frequency

[MHz]

1-core 32.753

2-core 27.586

3-core 23.384

13

Experimental Results

▪ Finally, dependencies from cores locations have been analyzed in terms of timing:

▪ 2 different layouts have been implemented for each design

▪ L1 minimizes the distance from the I/O buffers while L2 maximizes it

▪ Each color represents a r-VEX core

▪ The red circle represents the I/O buffer
L1 Layout L2 Layout

1
-c

o
re

2
-c

o
re

3
-c

o
re

The 3 cores
overlap due to
unavailability of

resources

14

Experimental Results

▪ Data Delay analysis of the 10 worst paths with placement influence

7

9

11

13

15

17

19

21

23

1-core L1 1-core L2 2-core L1 2-core L2 3-core L1 3-core L2

D
a

ta
 d

e
la

y

[n

s]

Layout

Overall deterioration of
the performances with
higher distances to the

I/O buffers

∽
6
.0

0

Highest difference
between 1-core layouts

due to the highest
average distance from

I/O

Degradation of other
L2s appears to be less
since routing paths are

shorter

15

Current Work

Stark
A library for design

exploration

Rogers
A library for architecture

exploration

• Allows to extract info about

the implemented netlist.

• Instances, Sites and nets are

instantiable objects in

Python with methods

associated with them

• Allows to extract info about the

architecture.

• Extraction of hidden modules

• Extraction of all possible routing

lines with timing

• Extracting of available routing

targets given a source

The libraries are built as Python
bindings of the C++ data
structures so they are as

reliable as the vendor tool
itself.

NG-ULTRA

Routing lines

(1.33 GB)

NG-MEDIUM

Routing lines

(84,4 MB)

15

Impulse Tool

These routing resources
(MESH, RI, RE, RS) are
hidden in the release
version of tool.

The Stark and Rogers
libraries do take into
account these modules
when exploring the
device

15

Current Work – Routing Topology Modeling

This picture shows the MESH
matrix to route the nets
outside the tile

15

Current Work – Detailed Routing Internal Network

This picture shows the routing
lines of the internal network
matrix of the tile

15

TERRAC OSIP Project

15

▪ Rad-hard technology improvements unlocked several high-computational power

applications fields such as ML and NN accelerators, arising the necessity to improve

performances even further

▪ AlexNet has been accelerated on a r-VEX soft processor as benchmark on NanoXplore

NG-MEDIUM chip

▪ Timing analyses have been performed to highlight the influence of placement in FPGA

implementations of NN accelerators

▪ High criticalities have been observed while distancing accelerator cores from the I/O

buffers of the FPGA

▪ Future works include the development of a place and route on NanoXplore FPGAs to

improve timing performances

Conclusions

16

Andrea andrea.portaluri@polito.it

Thank you all for the attention

Sarah sarah.azimi@polito.it

Luca luca.sterpone@polito.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25

