
Ladislavyehák ladislav.rehak@lauterbach.com

Speeding Up DO-178 Safety
Certification with Trace-based
Code Coverage
13th -15th June 2023

©
L

a
u

te
r
b

a
c

h
.c

o
m

Introduction

Debugging of NanoXploreSoCs

Tracing of NanoXploreSoCs

Code Coverage Measurement

[ŀǳǘŜǊōŀŎƘΩǎ
Tool Qualification Support Kit (TQSK)

2

©
L

a
u

te
r
b

a
c

h
.c

o
m

Debuggers areknownforΧ

3

Variable
Inspection

Run-State
Control

Breakpoints

Hardware
Register

Inspection

RTOS
Awareness

Performance
Analysis

©
L

a
u

te
r
b

a
c

h
.c

o
m

Χ ōǳǘ canactuallydo muchmore

Allows capturing program
flow, analyzing execution
times, optimizing code

Can also provide data for code
coverage analysis

4

Program Flow captured with Lauterbach TRACE32® Run time until stop
of trace recording

Time spent within
specific program

function, task

©
L

a
u

te
r
b

a
c

h
.c

o
m

Microprocessor emits program flow (trace) data via specialized on-chip blocks

Data stream is saved in on-chip trace buffers or in trace hardware (e.g. TRACE32®
PowerTraceModule)

Later on, trace data is transferred to PC for analysis

A Little Bit of Theory: CPU ProgramFlow Trace
HowDoesit Work: Hardware Setup (I)

5

©
L

a
u

te
r
b

a
c

h
.c

o
m

A Little Bit of Theory: CPU ProgramFlow Trace
HowDoesit Work: Hardware Setup (II)

6

PowerDebug
X50

PowerTraceII

NanoXplore
NG Ultra SoC

Preprocessor

©
L

a
u

te
r
b

a
c

h
.c

o
m

A Little Bit of Theory: CPU ProgramFlow Trace
HowDoesit Work: TRACE32® Views (III)

7

Code Listing

Trace Listing

Execution Chart

©
L

a
u

te
r
b

a
c

h
.c

o
m

Source Code
Full Source-

Code
Instrumentation

Compilation
Data Acquisition

(Functional Interface)
Analysis

How does this apply to Code Coverage?
Traditionally, Code Coverage Needs Instrumentation

A) Instrumentation of full source code*
to capture program flow

B) Compile instrumented code and run
code on target (or in simulator)

C) Acquire program flow data via functional
interface

D) Analyze in Code Coverage Tool

8*In case of object code instrumentation (OCI): similar process, but instrumentation after compilation

Typical issues:

ÅCode size growth: Executable does
not fit into target memory size

ÅRAM consumption

ÅLonger execution time due to
overhead

©
L

a
u

te
r
b

a
c

h
.c

o
m

Trace Based Code Coverage
Results Calculated from Flow Trace

9

Source Code
Targeted

(Trace-Gap)
Instrumentation

Compilation
Data Acquisition

(Trace Recording &
Processing)

Analysis

A) Targeted Instrumentation (covering trace gaps)
Å Instrumentation is required only for MC/DC and Decision

coverage in cases like conditional instructions.

B) Compile instrumented code and run code on
target (or in simulator)

C) Acquire program flow by TRACE32 via trace
interface

D) Analyze in TRACE32 or external tool

Key Benefit

ÅOnly small code size
increase, no data memory
occupied

ÅLess instrumentation
overhead

ÅExecution possible on
target HW possible as well
as in simulator

©
L

a
u

te
r
b

a
c

h
.c

o
m

Trace based Code Coverage
What are the challenges?

10

Map Decisions,
Conditions and Calls

ωAutomatic mapping for
most common
architectures and
compilers

ωHeuristics

Compiler Optimization

ωDisable optimization or

ωUse Targeted
Instrumentation

Conditional Instructions
not showing up in trace

ωTune Compiler flag or

ωUse Targeted
Instrumentation

Many different Compiler
and Architecture

Combinations

ωSupport for
combination can be
added on demand

ωTargeted
Instrumentation as a
fallback solution

©
L

a
u

te
r
b

a
c

h
.c

o
m

Code Coverage Contributionin individual Test Phases

121212

Code Coverage Contributionin Test Phase

total

Code Coverage Gained
UsingTrace

Code Coverage Gained
UsingUnit/Integration
Testing

©
L

a
u

te
r
b

a
c

h
.c

o
m

Measurement how thoroughly code has been stressed by testing

Trace generation has no runtime overhead

Scales well with application size

Long-term tests can be monitored

Code coverage can be efficiently measured throughout all testing phases

Measurement of complex coverage criteria during later stages becomes feasible

Less pressure to achieve high code coverage at unit test level

Use of integration of system testing results can reduce the overall effort

Code Coverage in Functional Safety Projects

13

©
L

a
u

te
r
b

a
c

h
.c

o
m

Domain-specific guidance for TRACE32®

Covers safety standards for different industries

Tool classification and application guidance for
TRACE32® features

User contributes knowledge of project context to
adapt the generic guidance to project needs (use
cases, process flow, operating environments, ...)

Verification of TRACE32® in the user environment

Test suites for requirements-based testing

Designed for compatibility with diverse user
environments

Tool Qualification Support Kit (TQSK):
Making Qualification Easy

14

