
Ladislav Řehák    ladislav.rehak@lauterbach.com

Speeding Up DO-178 Safety 
Certification with Trace-based 
Code Coverage
13th -15th June 2023



©
L

a
u

te
r

b
a

c
h

.c
o

m

Introduction

Debugging of NanoXplore SoCs

Tracing of NanoXplore SoCs

Code Coverage Measurement

Lauterbach’s
Tool Qualification Support Kit (TQSK)

2



©
L

a
u

te
r

b
a

c
h

.c
o

m

Debuggers are known for…

3

Variable 
Inspection

Run-State 
Control

Breakpoints

Hardware 
Register 

Inspection

RTOS 
Awareness

Performance 
Analysis



©
L

a
u

te
r

b
a

c
h

.c
o

m

… but can actually do much more

Allows capturing program 
flow, analyzing execution 
times, optimizing code

Can also provide data for code 
coverage analysis

4

Program Flow captured with Lauterbach TRACE32® Run time until stop 
of trace recording 

Time spent within 
specific program 

function, task



©
L

a
u

te
r

b
a

c
h

.c
o

m

Microprocessor emits program flow (trace) data via specialized on-chip blocks

Data stream is saved in on-chip trace buffers or in trace hardware (e.g. TRACE32® 
PowerTrace Module)

Later on, trace data is transferred to PC for analysis

A Little Bit of Theory: CPU Program Flow Trace
How Does it Work: Hardware Setup (I)

5



©
L

a
u

te
r

b
a

c
h

.c
o

m

A Little Bit of Theory: CPU Program Flow Trace 
How Does it Work: Hardware Setup (II)

6

PowerDebug
X50

PowerTrace II

NanoXplore
NG Ultra SoC

Preprocessor



©
L

a
u

te
r

b
a

c
h

.c
o

m

A Little Bit of Theory: CPU Program Flow Trace
How Does it Work: TRACE32® Views (III)

7

Code Listing

Trace Listing

Execution Chart



©
L

a
u

te
r

b
a

c
h

.c
o

m

Source Code
Full Source-

Code 
Instrumentation

Compilation
Data Acquisition

(Functional Interface)
Analysis

How does this apply to Code Coverage?
Traditionally, Code Coverage Needs Instrumentation

A) Instrumentation of full source code* 
to capture program flow

B) Compile instrumented code and run 
code on target (or in simulator)

C) Acquire program flow data via functional 
interface

D) Analyze in Code Coverage Tool

8*In case of object code instrumentation (OCI): similar process, but instrumentation after compilation

Typical issues:

• Code size growth: Executable does 
not fit into target memory size

• RAM consumption

• Longer execution time due to 
overhead



©
L

a
u

te
r

b
a

c
h

.c
o

m

Trace Based Code Coverage
Results Calculated from Flow Trace

9

Source Code
Targeted 

(Trace-Gap) 
Instrumentation

Compilation
Data Acquisition 

(Trace Recording & 
Processing)

Analysis

A) Targeted Instrumentation (covering trace gaps)
• Instrumentation is required only for MC/DC and Decision 

coverage in cases like conditional instructions.

B) Compile instrumented code and run code on 
target (or in simulator)

C) Acquire program flow by TRACE32 via trace 
interface

D) Analyze in TRACE32 or external tool

Key Benefit

• Only small code size 
increase, no data memory 
occupied

• Less instrumentation 
overhead

• Execution possible on 
target HW possible as well 
as in simulator



©
L

a
u

te
r

b
a

c
h

.c
o

m

Trace based Code Coverage
What are the challenges?

10

Map Decisions, 
Conditions and Calls

•Automatic mapping for 
most common 
architectures and 
compilers

•Heuristics

Compiler Optimization

•Disable optimization or

•Use Targeted 
Instrumentation

Conditional Instructions 
not showing up in trace

•Tune Compiler flag or

•Use Targeted 
Instrumentation

Many different Compiler 
and Architecture 

Combinations

•Support for 
combination can be 
added on demand

•Targeted 
Instrumentation as a 
fallback solution



©
L

a
u

te
r

b
a

c
h

.c
o

m

Code Coverage Contribution in individual Test Phases

121212

Code Coverage Contribution in Test Phase

total

Code Coverage Gained
Using Trace

Code Coverage Gained
Using Unit/Integration 
Testing



©
L

a
u

te
r

b
a

c
h

.c
o

m

Measurement how thoroughly code has been stressed by testing

Trace generation has no runtime overhead

Scales well with application size

Long-term tests can be monitored

Code coverage can be efficiently measured throughout all testing phases

Measurement of complex coverage criteria during later stages becomes feasible

Less pressure to achieve high code coverage at unit test level

Use of integration of system testing results can reduce the overall effort

Code Coverage in Functional Safety Projects

13



©
L

a
u

te
r

b
a

c
h

.c
o

m

Domain-specific guidance for TRACE32®

Covers safety standards for different industries 

Tool classification and application guidance for 
TRACE32® features

User contributes knowledge of project context to 
adapt the generic guidance to project needs (use 
cases, process flow, operating environments, ...)

Verification of TRACE32® in the user environment

Test suites for requirements-based testing

Designed for compatibility with diverse user 
environments

Tool Qualification Support Kit (TQSK):
Making Qualification Easy

14



©
L

a
u

te
r

b
a

c
h

.c
o

m

Invitation to our Booth Demo 

MC/DC coverage demo on Arm® Cortex®-R52 
core in a NanoXplore NG-Ultra SoC

Used hardware: PowerDebug X50 
Fast USB3

Ethernet for remote usage in test labs

PCI Express interface for high bandwidth off-chip 
trace 

Used hardware: PowerTrace III
8 GByte memory

Parallel trace with up to 36 signals

600+ Mbit/s per signal for up to 17 signals

400 MByte/s streaming speed

Also works in instruction set simulator

15



©
L

a
u

te
r

b
a

c
h

.c
o

m

Summary

Regulatory environment of Avionics Industry leads to
Focus on early hardware-based testing

Object-code coverage helpful for projects with high criticality

Projects with high criticality use compiler optimizations very cautiously

TRACE32® provides Long-term commitment for legacy platforms

TRACE32® is your one-stop solution for all code coverage needs

TRACE32® is more time/space efficient than other code coverage tools

TRACE32® provides new opportunities for integration and system testing

→ TRACE32® speeds up DO-178 Safety Certification with Trace-based Code Coverage

16



17

Speeding Up DO-178 Safety 
Certification with Trace-based 
Code Coverage

Automotive Semiconductor Telecommunication Industrial, Medical,

Your        to to Embedded Innovations 
since 40 Years

100.000+
installed debuggers

10.000+
customers 40+% 

market share

15.000+
supported chips

Ladislav Řehák 
Systems Engineer

Lauterbach GmbH

Ladislav.Rehak@Lauterbach.com

Questions?

Aerospace, …



T H A N K  YO U !


