STAR-Dundee

20 Years of Spacecraft Networking Innovation

SpaceFibre IP Core for BRAVE FPGAs

Marti Farras Casas, Albert Ferrer Florit

www.star-dundee.com @S

@STAR_Dundee

Contents

- SpaceFibre technology
- BRAVE Transceivers Verification
 - Simulation Model
- Synthesis Results
 - SpFi Post Synthesis Simulation
 - Resource Utilisation
- Hardware Validation

SpaceFibre for payload data-handling

- Spacecraft onboard data-handling network technology
- Connects together instruments, data compressor, data processors, data storage, downlink transmitter and control computer on-board a spacecraft
- Very high performance
 - 6.25 Gbit/s per lane and higher depending on SerDes
- Multi-lane capability
 - Increases link bandwidth Quad lane link at 6.25 Gbit/s per lane gives 25 Gbit/s
 - Arbitrary number of lanes with graceful degradation when a lane fails.
- In-built Quality of Service
 - Bandwidth reservation, priority and scheduling
- Fault detection, isolation and recovery capabilities
 - At the link level enabling rapid error recovery (a few microseconds)
 - Provides data integrity and reliable data delivery

SpaceFibre for payload data-handling

- Low-latency broadcast messages
 - For time distribution, synchronisation, event signaling, error notification, etc.
- Runs over electrical or optical cables
 - Few m electrical, 100 m fibre optic
- Small implementation footprint
 - Taking a few percent of a recent radiation tolerant FPGA
- Added as both data & control planes in SpaceVPX Vita 78 recently released

SpaceFibre IP Cores General Features

- Configurable
 - Number of lanes, virtual channels, ports
- High performance
 - Optimised for radiation hardened FPGAs
- Easy to use
 - AXI4-Stream interface for each Virtual Channel
 - Reference designs for RTG4, PolarFire, KUS, Versal, BRAVE...

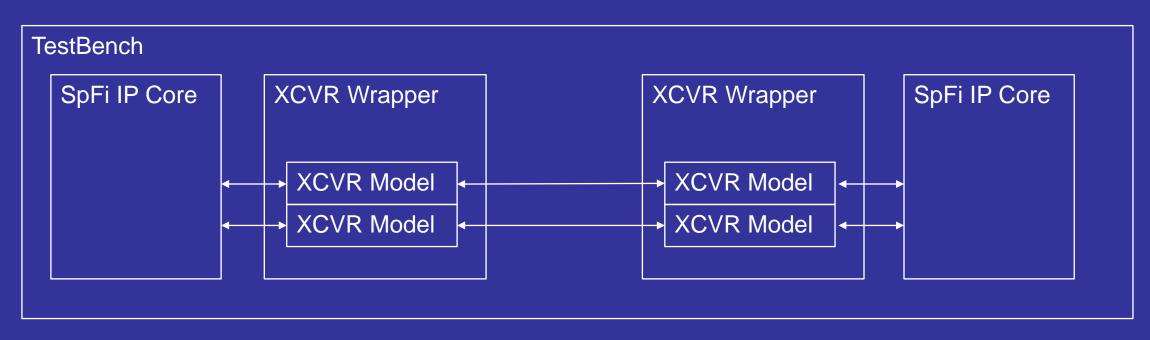
Safe

- Extensive verification and validation
- Tested in radiation environment
- TRL 9: Flying in operational missions



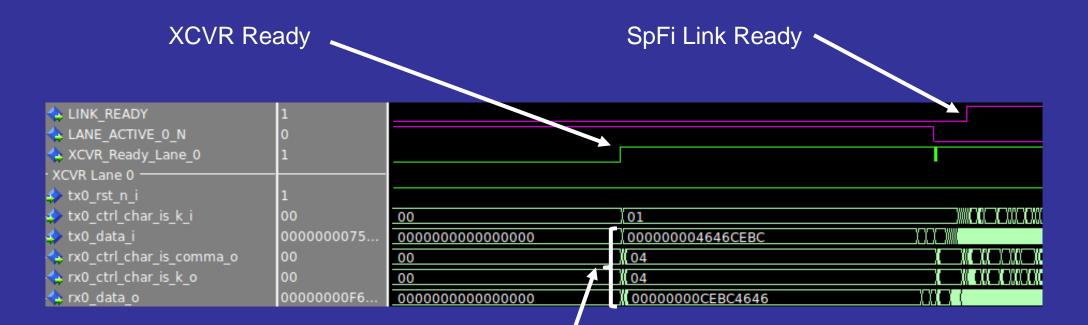
SpaceFibre IP Cores General Features

- Use of EDAC protection in memories
- Guaranteed, straightforward, timing closure
 - Lane rate only limited by Serdes (e.g. up to 3.125 Gbps on RTG4)
 - For the whole temperature and voltage range (i.e. fast & slow corners)
 - With EDAC and SET filters
 - Does not require specific placement or timing constraints.
 - Even with more than 80% FPGA utilisation
- Low latency
 - Less than 400 ns for Broadcasts (including 250ns due to SerDes latency)
 - Streaming frame sending option
- Compact design

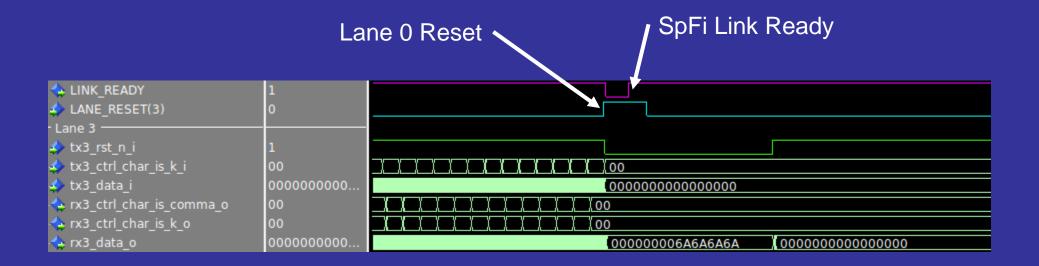


- STAR-Dundee carried out verification of SerDes
 - Using simulation model
 - Prior to manufacture (NG-Large)
- Verified main functionality of PCS and PMA Verilog models
 - For both NG-Ultra and NG-Large simulation models
 - BRAVE transceivers connected to SpFi Multi-Lane:
 - 8B10B Encoding
 - Comma detection with K28.7 and K28.5
 - Rate adjustment using SKIP control words
 - Transmit electrical idle capability (PMA)
 - Loss Of Signal detection capability (PMA)
 - Interface PCS with STAR-Dundee SpFi IP Core
 - Control signals
 - Word realignment

- Behavioural simulation
 - SpFi optimisations for BRAVE FPGAs
 - SpFi ⇔ XCVR logic
 - XCVR behaviour

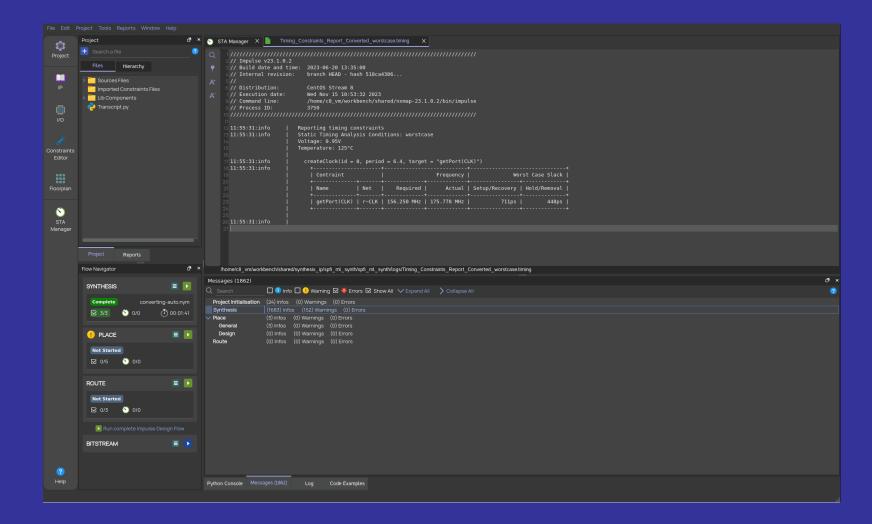


👍 LINK_READY	-No Data-					
■	-No Data-	0			<u>8</u> 0	
	-No Data-					
	-No Data-					
	-No Data-					
	-No Data-					
— Lane 0 ————	_					
↓ tx0_rst_n_i	-No Data-					
🛯 🍫 tx0_ctrl_char_is_k_i	-No Data-	00	01			
∎🤣 tx0_data_i	-No Data-	000000000000000	00000004646CEBC			
🛨 🔩 rx0_ctrl_char_is_comma_o	-No Data-	00	04			
₽-4 rx0_ctrl_char_is_k_o	-No Data-	00 00	04			
🛨 🔩 rx0_data_o	-No Data-	000000000000 00000000000000000000000	0000000CEBC4646		(
— Lane 1 ———	_					
↓ tx1_rst_n_i	-No Data-					
∎� tx1_ctrl_char_is_k_i	-No Data-	00	01			
∎� tx1_data_i	-No Data-	000000000000000	00000004646CEBC	*****	(
••	-No Data-	00	04			
• x1_ctrl_char_is_k_o	-No Data-	00 100	04			
∎	-No Data-	000000000000 (000000000000000000000	0000000CEBC4646		······································	
— Lane 3 —	_					
↓ tx3_rst_n_i	-No Data-					
±∲ tx3_ctrl_char_is_k_i	-No Data-	00	(01		00	101
∎	-No Data-	000000000000000	(00000004646CEBC		000000000000000000000000000000000000000	1000000004646CEBC
• •	-No Data-	00	04			01
• • • rx3_ctrl_char_is_k_o	-No Data-		04			01
trx3 data o	-No Data-		0000000CEBC4646			00000004646CEBC


SpFi Link Initialisation

Exchange SpFi INIT Words

- Graceful degradation
 - Automatically spreading the traffic over the remaining working lanes

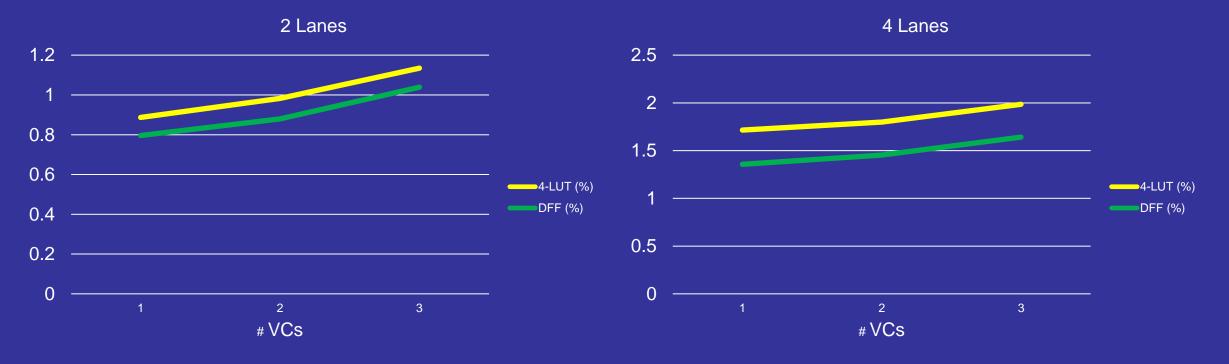


Synthesis

SpaceFibre Multi-Lane IP Core synthesis

- Initial resource usage
- Initial timing values
- Memory inference

Synthesis Results


- Post-synthesis simulation
 - SpFi IP Core in loopback
 - Verify memory inference

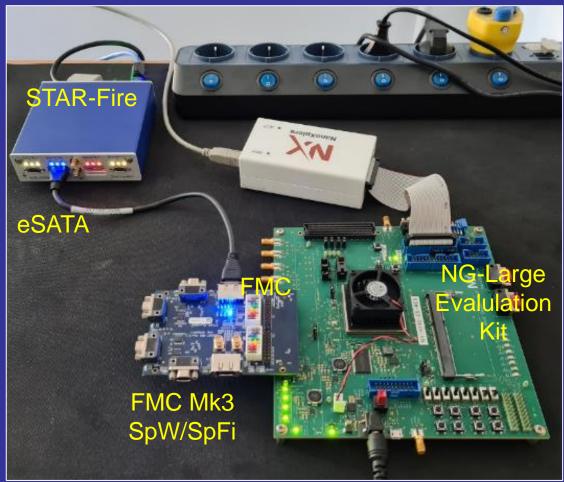
a sim - Default ;	📥 👍 link_ready	-No Data-	
▼ Instance Design uni		-No Data-	
i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_cy(nx_s	si 💠 L0_st_clear_line	-No Data-	
🧧 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_rfb_u(n	L0_st_disabled	-No Data-	
🧧 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 [nx_ram(sin	LU_St_Walt	-No Data-	
🧧 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1nx_ram(sin	LU_SL_Started	-No Data-	
🔄 i spfi ml brave i spfi ml 1 spfi intf 1 spfi link 1 nx ram(sin		-No Data- -No Data-	L
🔄 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin		-No Data-	
🔄 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1nx_ram(sin	Eo_sc_connected	-No Data-	
📕 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin		-No Data-	
📕 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin		-No Data-	
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin			
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n		
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n 🍫 VC0_AXI_TX_TVALID	1	
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n 🗉 🤣 VC0_AXI_TX_TDATA	64'hFFFFFFF	FFFFFFFFFFFFFF
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n 🔶 VCO_AXI_RX_TVALID	1	
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n 🗜 🛧 VCO_AXI_RX_TDATA	64'hFFFFFFF	FFFFFFFFFFFFFF
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n		
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n		
🚽 i_spfi_ml_brave_i_spfi_ml_1_spfi_intf_1_spfi_link_1 nx_ram(sin	n		
i_SERDES_RX_WORD_1_14_iob nx_iob_i(nx	x		
i_VC0_AXI_TX_TDATA_30_iob nx_iob_i(nx	x		

Synthesis Results

- Post-synthesis resource usage
 - Resource usage for different configurations
 - ~ 2% of resource utilisation

Synthesis Results

- Post-synthesis timing estimation
 - Constrained for 6.25 Gbit/s link speed
 - Similar timing results for different configurations
 - Max clock speed of about 175 MHz (> 6.25 Gbit/s)


11:55:31:info 11:55:31:info	Reporting timing c Static Timing Anal Voltage: 0.95V Temperature: 125°C 							
11:55:31:info 11:55:31:info	<pre>createClock(id = 0, period = 6.4, target = "getPort(CLK)")</pre>							
11:55:51: (110	Contraint		Ì	Frequency		rst Case Slack		
	Name	Net	Required	Actual	Setup/Recovery	Hold/Removal		
	getPort(CLK)	r~CLK	156.250 MHz	175.778 MHz		448ps		

Hardware Validation

- Successful link connection established with STAR-Fire unit
 - 2 Gbps setup
 - Correct data transmission without any data errors
 - Retry events periodically appear
- Feedback from this experiment provided to NanoXplore
 - The final validation of the IP to be completed soon
 - Reference design with SerDes configuration, clock scheme details, memory instantiation (EDAC), etc. provided with IP
- NG-Ultra validation
 - Reference design ready for validation as soon as hardware is available.

NanoXplore NG-Large Evaluation Kit

STAR-Dundee's SpaceFibre IP Cores successfully verified and compatible with BRAVE transceivers

 Provide support and reference designs for STAR-Dundee SpaceFibre IP Cores

Full validation on NG-Ultra as soon as hardware is ready