Mr Bengt Larsson, OHB Sweden Mr Thomas Karlsson, OHB Sweden

SPACE SYSTEMS

The success of the PRISMA mission and the rendezvous between the PRISMA Mango and Picard satellites

MISSION IDEA:

"Demonstrate maneuvering techniques and sensor technology for Autonomous Formation Flying and Rendezvous"

The PRISMA Satellites

Tango

- 3-axis stabilized
- Solar Magnetic control
- 40 kg launch mass
- FFRF, GPS, Inter-satellite link

Mango

- 3-axis stabilized
- Attitude Independent Orbit Control
- 145 kg launch mass
- FFRF, GPS, VBS, DVS, Inter-satellite link
- 3 propulsion systems, >200 m/s Delta-V

GNC Experiment Demonstrations				
Passive formation flying				
Autonomous formation flying (AFF)	OHB Sweden			
Autonomous formation control (AFC)	DLR			
RF-based formation flying	CNES			
Forced motion				
Proximity Operations (PROX)	OHB Sweden			
Final Approach and Recede (FARM)	OHB Sweden			
Forced RF-based motion	CNES			
Collision avoidance	OHB Sweden / CNES			
Autonomous Rendezvous (ARV)	OHB Sweden			

	¥		
		7	
Ą:			

Hardware Flight Demonstrations

HPGP Motor Tests	ECAPS
Microthruster Motor Tests	Nanospace
Relative GPS receivers	DLR
Vision Based Sensor (VBS)	DTU
RF Sensor Tests	CNES
LEON-3 on-board processor	OHB Sweden
PRIMA MEMS mass analyzer	IRF
Digital Video System	Techno Systems

AFF (Autonomous Formation Flying mode) - used for closed loop cooperative satellite formation flying and dedicated AFF experiments. Also used for routine operational formation flight between 30km to 10m relative distances.

PROX/GPS – First flight demonstration of close proximity GPS based forced motion relative orbit control over the range of 50m to as low as 2m relative distances.

ARV – First flight demonstration of autonomous line-of-sight only based target search, orbit determination, orbit align and approach from 30km to 50m relative distances.

CNES – First flight demonstration of autonomous formation flight using a radio electric relative sensor.

DLR – First comprehensive demonstration of GPS based autonomous formation flight (<5cm relative accuracy) and extraction of relative Precision Orbit Determination (<0.5cm relative accuracy).

PROX/VBS – The first closed loop proximity operations based on visual sensor had been performed to within 2m relative CoG distance (~1m physical separation)

PRISMA Rendezvous Reconstruction and Video from Orbit

Nanospace – First flight of the MEMS cold gas micropropulsion system. Electrical validation of all MEMS components was possible.

DVS – First flight of Techno Systems digital video camera system.

SW & DHS – 100% fault free operation of autocoded Model Based Software (MBSW), running on a LEON-3 processor, first full spacecraft flight operation of the RAMSES ground control system.

- After the PRISMA Nominal mission, experiment capability was offered to interested partners and other organisations.
- Then the idea came up at OHB Sweden to use PRISMA for a final exciting experiment!

IRIDES – The new adventure of PRISMA

PRISMA - IRIDES

- Primary goal: To perform rendezvous with and inspection of a non-cooperative satellite!
- IRIDES = Iterative Reduction of Inspection Distance with Embedded Safety
- Unique opportunity to develop, validate and test technologies within a low project budget in preparation of future exploration, debris mitigation and servicing missions (refueling, replacement or addition of modules,...).

IRIDES

IRIDES Phases (1)

- Tango (target S/C) decommissioning, completed
- Transfer Start, executed in a series of delta-V manoeuvers from May 13 to June 20, 2013. The total amount of delta-V was 32 m/s. Completed.
- Transfer Orbit, on-going, completed this summer
- Transfer Stop and Orbit Aligning

IRIDES

IRIDES: Phases (2)

- Inspection Campaign:
 - Vision Based Sensor will be the primary instrument for relative navigation
 - Performance is expected to be better than 10 m along-track and 1 m in cross-track and radial
 - Iterative strategy
 - A distance of 10 m allows for images of the rendezvous object where a pixel would represent 4x4 mm with the Vision Based Sensor and 3x3 mm with the Digital Video System
- Generation of an object model with accurate dimensions, pose and tumbling behaviour. Used as input for active debris removal missions, or other purposes.
- Deorbit Propellant Depletion

Thank you!

Visit <u>www.ohb-sweden.se</u> for more information or contact <u>bengt.larsson@ohb-sweden.se</u> OHB SWEDEN AB / PRISMA and