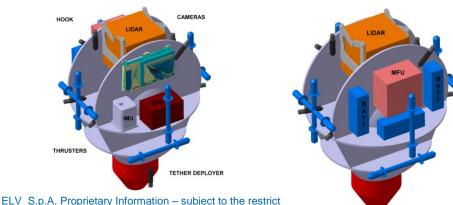
Active Debris Removal by Vega Upper Stage adaptation

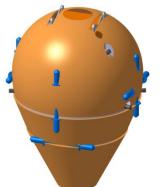
ADR Workshop 06-May-2014

The information contained in this document is ELV S.p.A. propri etary and is disclosed in confidence. It is the property of ELV S. p.A. and shall not be used, disclosed to others or reproduced, without the express written consent of ELV S.p.A.

System Engineering Team

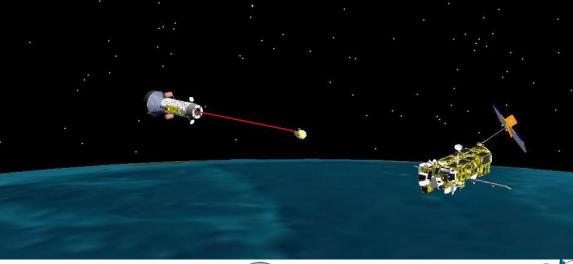
Active Debris Removal by AVUM Adaption


ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page


Prologue

ions on the cover or first page

- On November 2012 ELV presented its study for an Active Debris Removal based on AVUM
- The concept was elaborated targeting to Envisat S/C Main features
 - Low impact on AVUM stage
 - Modular approach
 - AVUM Propulsion Runtime Extension
 - Remote Controlled Probe for:
 - closing phase
 - grabbing the target


ENVISAT Capture and De-orbiting

Avum attitude aiming to target

Remote Probe Deployment

MDA

Beginning 2013 a RFQ from ESA for a feasibility study was receipt:

"Active Debris Removal by Adaption of Vega Upper Stage"

- 1. System level conceptual design for two capture scenarios:
 - Net capture
 - Tentacles
- 2. The design had to include
 - Capture device(s)
 - GNC functions and requirements
 - Sensors' suite
 - Power Budget
- 3. Trade-off among different mission profiles with associated VEGA launcher performance.
- 4. Demonstrate the feasible of de-orbit scenario through analysis and simulations.

AO-13780 - The Team

Industrial Team

ELV Prime Contractor System design Mission Analysis

MDA Sensor Suite S/S selection and trade-off Robotic grabbing device S/S design

PoliMi Net grabbing device S/S design Tether supports design

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page

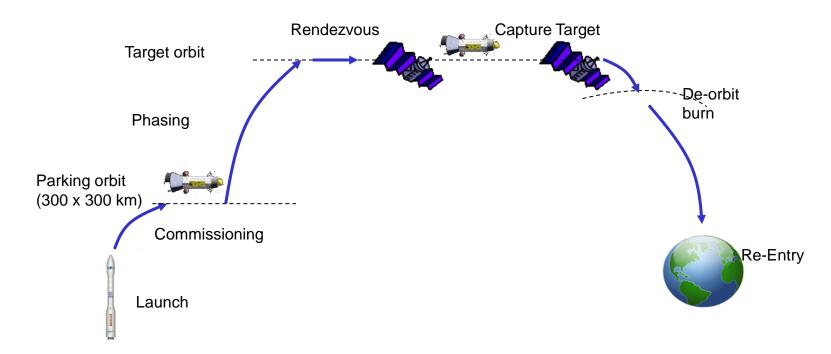
ELV Team Roster

Position	Team Member	Contact
Study Manager	Claudio MILANA	claudio.milana@elv.it
Cost Assessment		Claudio.IIIIalia@elv.it
Technical Coordinator	Stefano GALLUCCI	stefano.gallucci@elv.it
GNC	Christophe ROUX	christophe.roux@elv.it
Sub-systems manager	Bernardo TALONE	bernardo.talone@elv.it
Electric Propulsion	Matteo VOLPI	mattaa valni@alv.it
Flight Mechanics		matteo.volpi@elv.it
Power & MCI budgets	Alessandro CAMPOCHIARO	alessandro.campochiaro@consultant.elv.it
Far Range RDV		alica pardi@alu.it
Mission Analysis	Elisa NARDI	elisa.nardi@elv.it
De-orbiting simulations	Matteo BARTOLINI	matteo.bartolini@consultant.elv.it
Head of Flight Mechanics Team	François BATTIE	francois.battie@elv.it
Head of ELV Product Development Unit	Ettore SCARDECCHIA	ettore.scardecchia@elv.it

ENVISAT S/C

assumptions made for the study

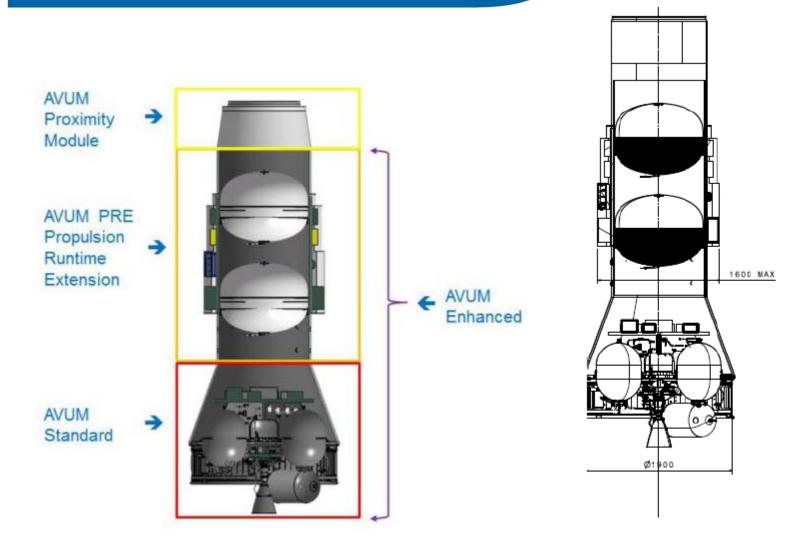
- Launched in 2002 it was the largest civilian Earth observation mission
- Sun-synchronous polar orbit (SSO):
 - Nominal reference orbit of mean altitude 800 km
 - 35 days repeat cycle, 10:00 AM MLST descending node
 - Inclination 98.55 deg
- Dimensions: 23 m x 5 m
- Mass is ~8000 kg
- Probable attitude:
 - Less than 1 deg/s spin around X axis
 - X axis pointing towards Nadir



Typical Mission Profile

The overall mission can be divided in several arcs:

- Ascent phase → injection of the chaser into a parking orbit
- Far Range Rendezvous
 - phasing of the chaser and transfer to an orbit close to the target (≈30/50km)
- Close Range Rendezvous
 - close approach (few meters)
- Capture by the selected grabbing device: net or tentacles
- De-orbiting
 - Pulling the Debris linked by the tether (grabbing by net)
 - Pushing the Debris firmly connected by tentacles



Modular approach

Phases and Functions

Ascent Phase → <u>Avum Std</u>

Standard Vega ascent to parking orbit

Far Range RDV → Avum enhanced

- Parking orbit/Phasing
- PRE → Propulsion Runtime Extension
- Patchable FPS → Mission Data uploaded to acquire target orbit

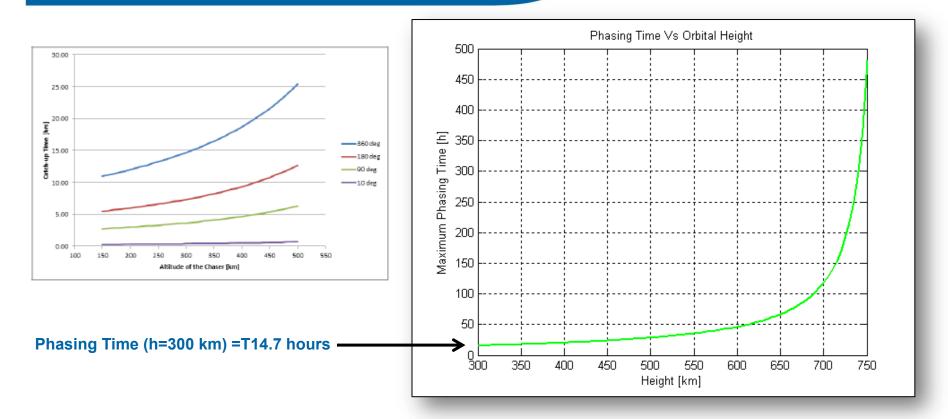
Close Range RDV→ Proximity Module with its own dedicated GNC

- Sensor Suite/Avionics → Relative Navigation
- Dedicated ACS sized for proximity operations

Grabbing Phase -> Grabbing Device (Net or Robotic Arm/Clamp)

De-orbiting → <u>Avum enhanced</u>

PRE/Patchable FPS → Safe de-orbit

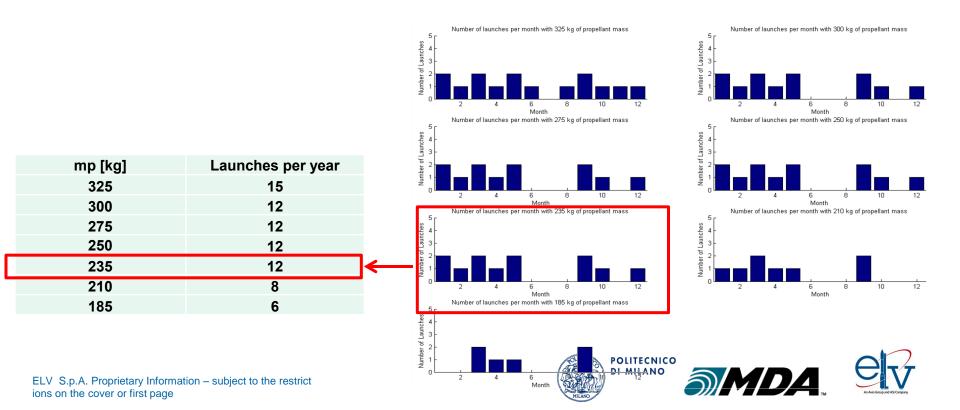


Avum Parking Orbit Choice

The 300 km @98.55° orbit is attractive for Vega → direct injection in the circular parking orbit by only 1 Avum boost (AV1)

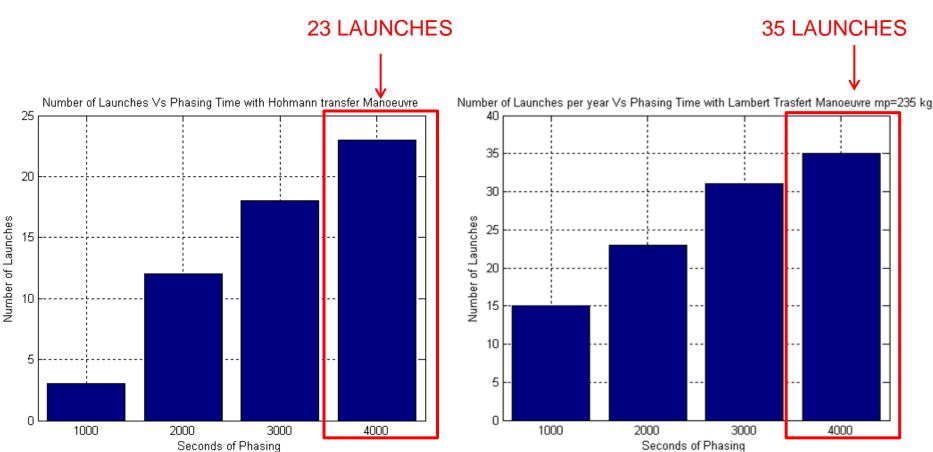
AV2 and AV3 will perform the transfer to the Target orbit AV4 and AV5 could be used for a two boosts re-entry

Launch Opportunities without Phasing



Hohmann transfer manoeuvre RESULTS:

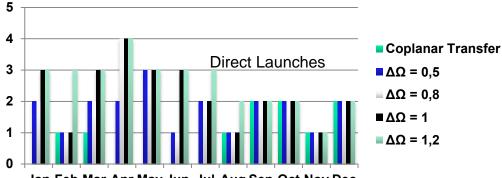
- Zero direct launches

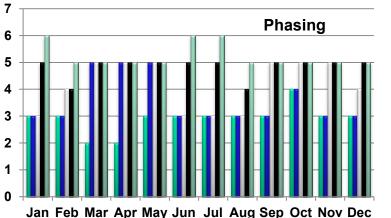

Lambert transfer maneuver RESULTS:

-Burned propellant mass sensitivity

Launch Opportunities with Phasing

Lambert Transfer


1000 2000 3000 Seconds of Phasing Hohmann Transfer


Launch Opportunities with $\Delta \Omega$

Mission feasibility increases:

$\Delta\Omega$ gives higher flexibility in terms of launch opportunities

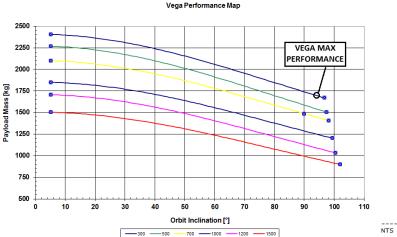
ΔΩ = 1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

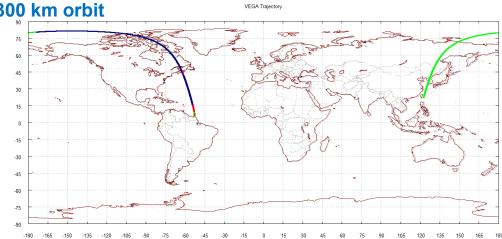
ΔΩ = 1,2

Colpanar Trast $\Delta \Omega = 0.5$ $\Box \Delta \Omega = 0.8$ **■**ΔΩ = 1

ΔΩ = 1,2

ELV S.p.A. Proprietary Information - subject to the restrict ions on the cover or first page


ΔΩ	Direct Launches	Phasing
[°]	Direct Launches	Fliasing
0	10	35
0,5	21	43
0,8	23	50
1	27	58
1,2	31	63
	[°] 0 0,5 0,8 1	Direct Launches 0 10 0,5 21 0,8 23 1 27


Vega Mission Analysis

VEGA Maximum Performance on 300 km x 300 km orbit

atitude [deg]

Longitude [deg]

Maximum performance is limited to 1500 kg by CSG constraints (Vega C > 1600kg)

	ΔV [m/s]				
	Short Mission	Long Mission			
SRMs	87	90			
To Parking Orbit	545				
Rendez-Vouz	385	265			
Approaching	16				
Deorbiting	223				
TOTAL	9959	9839			

	NTS									5 1 57	D	BALANC	E	
		REL.SP.	ΔI T.	WEIGHT	MACH	P. DYN	(T-D)/M_	GAM. R		DVprop_				DVinert_
	[s]	[m/s]	[km]	[kg]	[-]	[Pa]	[m/s2]	[°]	[•]			[m/s]		
1 IMU Start				138486.3		0.0	0.00	9ŏ. ŏ	ŏ.ŏ	0.0	0.0	0.0	0.0	0.0
1 Motor Sta	art 0.0		0.0	138486.3	0.0	0.0	0.00	90.0	0.0	0.0	0.0	0.0	0.0	0.0
1 Lift-Off	0.3	0.0	0.0	138435.3	0.0	0.0	9.86	90.0	0.0	0.0	0.0	0.0	0.0	0.0
1 g*alpha m	nax 17.0	169.9		120934.6		15115.3	21.56	74.6	3.8 (57900.2	Pa*°)			
1 Pitch-Ove				134381.2		567.2	18.62	89.9	0.3	72.4	-1.3	0.0	-70.1	1.0
1 GravityTu	irn 20.5	212.3	1.9	117305.5	0.6	22133.9	21.25	70.7	0.1	409.7	-38.5	-0.7	-326.7	43.8
1 Mach 1	31.5	332.1	4.7	107208.9	1.0 4	40541.3	17.55	61.7	0.0					
1 P.dyn. ma	ax 57.0	647.7	13.8	86020.7	2.2	55793.4	25.06	42.7	0.1					
1 (T-D)/M n	nax 92.5	1627.2	34.8	54759.0	5.2 1	11579.3	38.66	27.2	0.1					
1 AT Det.	114.5		50.5	50232.9		1590.5	0.72	21.1	0.2	2658.3	-486.7		-730.4	1342.6
1 Separatio	on 114.8	1761.2	50.7	50228.6	5.4	1553.9	0.70	21.1	0.2	2658.6	-487.7	-98.7	-730.4	1341.8
2 Coasting														
2 Motor Sta		1758.3	51.3			1454.1	-0.06	20.8	0.0	2658.6	-487.7	-98.7	-730.4	1338.9
2 (T-D)/M n	nax 160.0	3036.4	79.7	25352.1	11.1	101.4	35.85	13.1	7.4					
2 AT Det.	193.5		103.7	17855.9		2.1	1.39	10.3	0.0	5036.5			-810.8	3452.8
2 Separatio	on 218.4	3903.9	119.1	17828.6	10.4	0.2	0.00	7.8	0.0	5040.6	-706.9	-100.1	-810.9	3419.7
3 Coasting														
3 Motor Sta			127.0			0.1	0.00	6.0	2.4		-706.9			3400.4
3 HS Jettis			129.2			0.1	13.88	5.5	21.0	5104.3	-712.0	-100.1	-811.8	3458.0
3 alpha max			129.2			0.1	13.88	5.5	21.0					
3 (T-D)/M n			168.6	4514.9		0.0	47.34	4.3	8.8					
3 AT Det.	353.5		175.1	3912.3		0.0	1.32	4.5	3.5	8781.8	-791.8			6914.0
3 Separatio	on 378.3	7448.3	189.2	3905.9	10.7	0.0	0.03	4.3	3.5	8786.4	-809.3	-100.1	-953.6	6901.0
4 Coasting														
4 Motor Sta		7395.6	231.7	2521.5		0.0	0.00	3.6	6.9	8786.4	-809.3	-100.1	-953.6	6848.4
4 (T-D)/M m			330.0	2112.0		0.0	1.16	0.2	14.9					
4 Cut-Off	977.6	7793.3	330.0	2112.0	9.1	0.0	1.16	0.2	14.9	9333.1	-921.9	-100.1	-982.8	7253.3
UTCCTON CUM		T ELEMENTE	h	n [lem]	b a flor				4 [0]	om n[*				
MISSION SUMM		SRM Stage		_p[km] 14.948	h_a[kr 321.60		m_n[°] 50.332		i[°] .459	om_p[° -133.14		a*[°] 4.904		
Transf	er (before			16.000	316.00		50.329		.465	3.42		1.478		
11 ditsi	el (berore	coasting)	э.	10.000	510.00	- 00	30.329	90	.405	5.42	2	1.4/0		
LAST ST	GE PROPELL	ANT BUDGET	ים	v[m/s]	DW[kd	a]	tb[s]	Marg.	[ka]	Wp[kg	1			
CAST STA		r Ignition		· [Dwfrei	31	00[0]	mar g.	1.491	1477.30	6			
		gee Firing		46.693	409.4	56 5	16.238	0	.000	1067.84				
		Propellant							. 500	1029.34				
	character re	oper rane						50		2020-04				

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page

Short Mission → Maximum Phasing Time on Parking orbit = 5000 s

	Short Mission (Batteries)				
	Time [s]	Time [h]	Mp [kg]		
НО	0	0	1477		
Parking Orbit (300km x 300km)	977.6	0.27	1068		
Phasing (Max)	5000	1.39	1068		
Final Orbit (800km x 800km)	3000	0.83	818		
Avvicinamento Target	1000	0.28	818		
Aggancio + CCAM	5000	1.39	818		
Deorbiting Boost 1 + Coasting	5800	1.61	50		
Deorbiting Boost 2 + Coasting	2780	0.77	- 50		
TOTAL	23560	6.5			

Extra On Board Battery* needed to cover full mission \rightarrow 1

Extra TVC Battery* needed to cover overall AVUM burning time \rightarrow 1

OBB Duration [s]	12000
Extra OBB needed for mission	1
Total OBB weight [kg]	14.3

AVUM Burning Time [s]	1170
Extra ACTB needed for mission	1
TOTAL ACTB weight [kg]	10.9

* With respect to VEGA generic configuration

Long Mission → Maximum Phasing Time on Parking orbit = 14 hours

	Long N	Long Mission (Solar Array)			
	Time [s]	Time [h]	Mp [kg]		
НО	0	0	1477		
Parking Orbit (300km x 300km)	994.5	0.28	1068		
Phasing (Max)	50400	14	1068		
Final Orbit (800km x 800km)	3000	0.83	898		
Avvicinamento Target	1000	0.28	898		
Aggancio + CCAM	5000	1.39	898		
Deorbiting Boost 1 + Coasting	5800	1.61	70		
Deorbiting Boost 2 + Coasting	2780	0.77	70		
TOTAL	68975	19.2			

Power provided By Body Mounted Solar Array

Power Budget

	V	I [A]	Charge Power [W]	Charge Time [s]
ACTB	63	3.7	30	3000
Reduced Capacity OBB	33	9.1	300	3000
Avionics Power			200	
Extra Power			180 (35% Margin)	
POWER NEEDED			710	

Solar Array Height [m] 3 Radius [m] 0.6 Surface [m²] 11.2 Clean Surface [m²] 10.1 Power Density [W/m²] 70.3 Power [W] 711

Sizing	
	Solar C

Solar Cell Density [kg/m2]	0.84				
Solar Cells Weight [kg]	8.5				
Integration Masses [kg]	17.0				
Solar Panel Weight [kg]	25.5				
Margin Policy on Known Losses					
Temperature losses	15%				
Array losses	30%				
Solar incidence	20%				
Geometry losses	70%				

- II Danates files (as 21

0.04



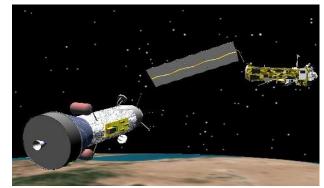
AVUM SM preliminary layout

AVUM Proximity Module GNC/ACS/sensors bay → for Proximity RDV

> AVUM PRE Propulsion Runtime Extension



Standard AVUM →



AVUM SM + Net layout

AVUM SM + Tentacles layout

System Modes

					Phase			
_		Launch	Parking	Far Range RDV	Close Range RDV	Grabbing	De-orbiting	CAM
System	S/S							
Avum Std								
	OBC	1	1	1	0	0	1	1
	GNC	1	1	1	0	0	1	1
	TT&C	1	1	1	1	1	1	1
	Attitude Det.	1	1	1	1	1	1	1
	Thermal	0	1	1	1	1	1	1
	RACS	1	1	1	0	0	1	1
	LPS	1	1	1	0	0	1	0
PRE								
	Thermal	0	1	1	1	1	1	1
	LPS	0	0	1	0	0	1	0
	Power	0	1	1	1	1	1	1
PM								
	GNC	0	0	0	1	1	0	0
	Sensors	0	0	0	1	1	0	0
	OBC	0	0	0	1	1	0	0
	ACS	0	0	0	1	1	0	0
	Thermal	0	0	0	1	1	0	0
GD								
	Tentacles	0	0	0	0	1	1	0
	Clamping	0	0	0	0	1	1	0
	Grabbing Sensors	0	0	0	0	1	1	0
	Net	0	0	0	0	1	1	0
	Theter	0	0	0	0	1	1	0
	Tension Sensors	0	0	0		_	1	0
		-	-	2	DI MILANC			_
oprietary Inf er or first pa	formation – subject to the restrict				(SEALER)		MD/	1

ELV S.p.A. Proprietary Information - subject to the restrict ions on the cover or first page

Modules main features

Avum Std software/avionics updates

- Patchable MD to manage more efficiently the Far RDV Phase
- Hybrid Navigation (GNSS)
- Attitude determination (star-tracker, GPS...)
- Power and Data distribution among modules
- Avionics and RACS Thermal control
- Coms: TLM (ground based/TDRSS), Commands

•Propulsion Runtime Extension (PRE) slip-on device

- Extends the AVUM deliverable DV (Propellant and Pressurant tanks)
- Hosts the Power S/S: Solar Array, battery pack
- LPS thermal control
- Tether arms attachment support

Proximity Device module

Hosts GNC, Avionics, Sensors and ACS for Close RDV and Grabbing

•Grabbing Device

Loaded software for nominal mission (right day, right time)

- Only 1 trajectory submission for each window (simpler MA)
- Low RAAN compensation capability (no dogleg for plane change)
- Less launch opportunities but faster missioning approach
- Ascent Phase to parking orbit as standard Vega flight
 - Hybrid navigation with GPS active from lift-off

Parking orbit used for phasing and uploading MD if window missed

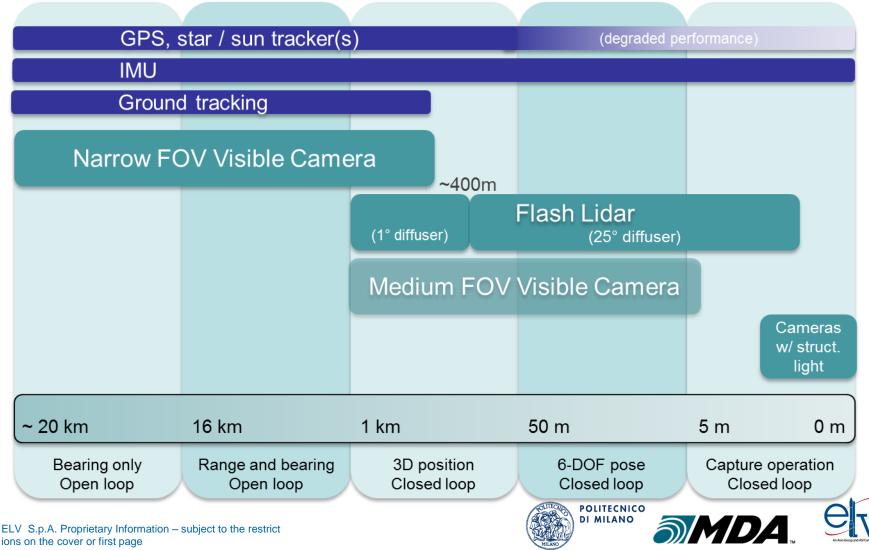
After reaching the orbit close to the target control passes to PM

- Vega FPS in idle mode
- PM OBC takes the control
- PM in charge of Closing and Grabbing phase

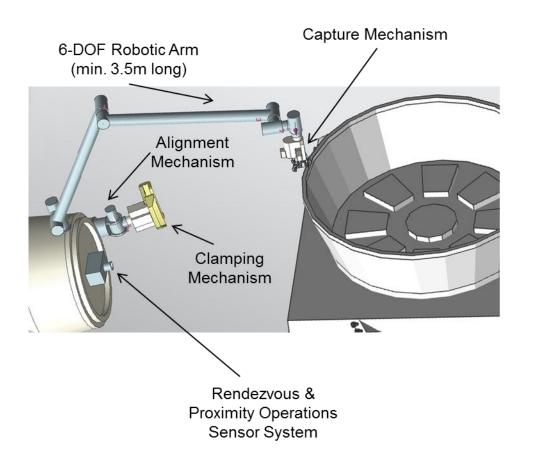
Grabbing Phase

- Rigid connection
 → RACS for fast Debris de-spinning

De-orbiting

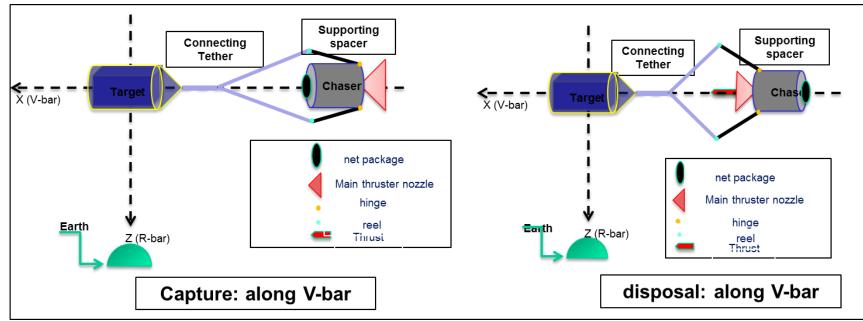

- Control returns to AVUM OBC
- Command from ground if needed to change preloaded sequence
- RACS ignites to dump MEA transients for flexible connection
- Stack separation after de-orbiting boost and AVUM CAM

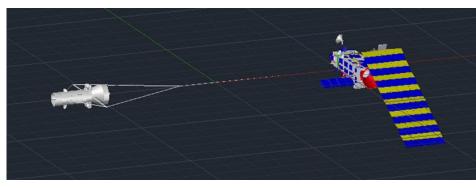
CRDV/Grabbing Sensor Selection


MDA analysis

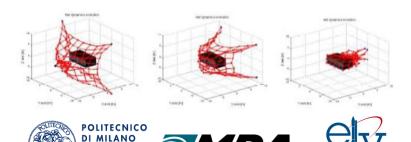
Grabbing devices overview - Robotic

Robotic Arm/Clamp MDA concept





Grabbing devices overview - Net


Net/Tether PoliMi Concept

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page

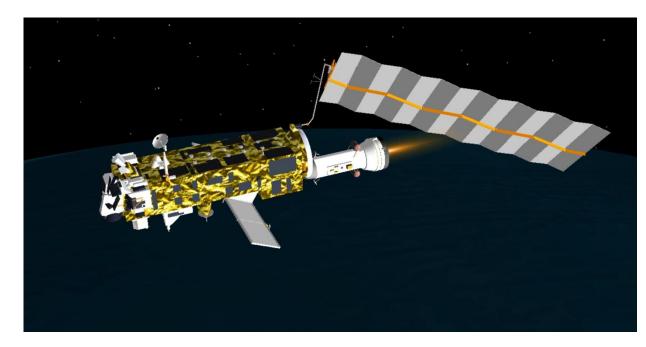
Pulling by tether simulation

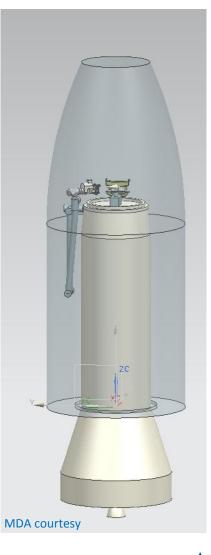
Models and Simulators

The analyses led to a set of sizing values

- Tether and tentacles length, damping and stiffness.
- Tentacle and tether support structure **position** on Avum.
- Grabbing point on Target Debris, in tentacle case definition.

Two class of models used to demonstrate the de-orbiting

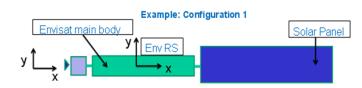

- Planar linear models: a simplified dynamic system is developed in orbital plan in order to highlights the main aspect of de-orbiting manoeuvre (Stability, Controllability, etc..)
- **6DOF model:** a complex model is used to simulate the entire dynamic system.

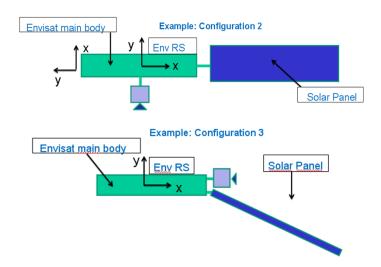


Rigid connection

Consolidated configuration for the Grabbing from MDA:

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page





Robotics: Results

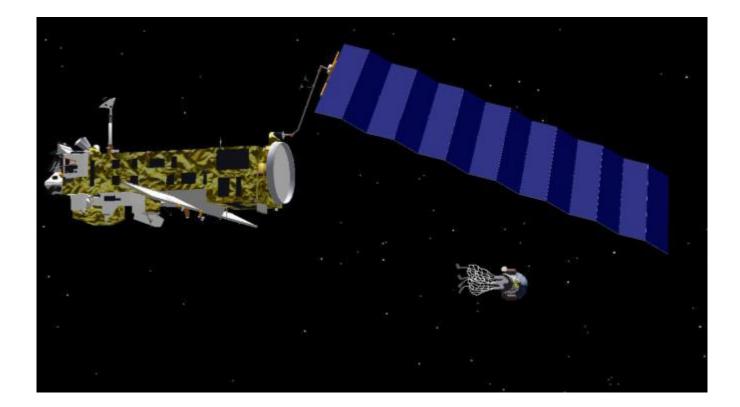
	Controllability Stability	
Configuration I Yes		Yes
Configuration II	No (capability very Low)	Yes / Low
Configuration III	Limited	Yes

Configuration 1 is the best for Controllability and Stability, but it presents drawbacks for the grabbing opportunities.

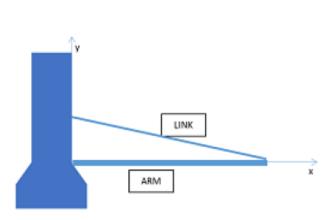
Configuration 2 is discarded considering the low controllability margins

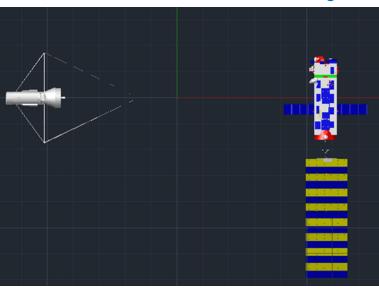
Configuration 3 is good as well considering that additional degree of freedom is guarantee with the clamping system.

The simulation 6dof confirms the planar model results with a successful de-orbiting.



Flexible connection


ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page

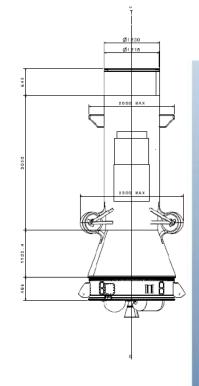


The **Controllability** analyses report that, fixing the AVUM attachment points in a precise region of the AVUM SM, the de-orbiting is assured even considering a possible disturbing torque due to the different tension of the tether (tether support structure at AVUM side)

The **Stability** analyses states that applying an <u>ad-hoc</u> control law the over all system has enough margins and residual oscillation are negligible.

The simulation 6dof confirms the planar model results with a successful de-orbiting.

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page



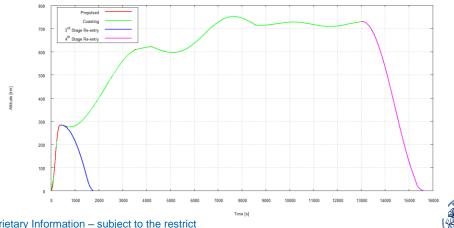
Electric Propulsion Orbit Rising

SA deployed

Thrusters HET 2 x PPS-5000 P= 10 kW

EPS Concept

In Orbit Demonstration


This is basically a quasi-standard Vega mission aimed to test key technologies in flight

Typical mission scenario

- 1st P/L release (350kg) on a 600km quasi-SSO orbit
- After the phasing maneuver the Debris is targeted (within a range of ≈50km)
- 1 orbit is elapsed near it.
- A deorbit boost is performed to place the Avum stage into a straight-to-the-sea re-entry path.
- The instrumentation mass penalty of Avum has been accounted to be about 100kg.

The required phasing and RDV could be obtained by

- properly chosen mission data: this lead to a reduced number of launch opportunities per year, but with no impact on the launcher.
- Improvement of the guidance on board algorithm: this improve the number of the launch opportunities, but need a change in the LV configuration.

Technology Maturity and risks

All the chosen components have already an high TRL /Flight Proven

In the system development some risks remains

•Low cost approach and Vega performance impose to limit redundancies

higher risk for in-flight contingencies

•Short mission could led to an high risk to have long stand by on ground for window missing

- Avum Avionics upgrade (hybrid navigation, radiation hardening, thermal control)
- FPS patchable (orbital phase only)
- •MEA Delta Qualification
- •RACS Delta Qualification
- •Power S/S

•Proximity Module is a New S/C

- Avionics
- Sensors
- GNC
- Software

•Grabbing Devices

New development

System	Subsystem	Items	TRL	Risks
AVUM Enhanced	AVUM Standard	Vega 4 th stage	9	-Radiation hardening -Active thermal control -IRS Hybridizing -FPS upgrade
	AVUM PRE	-Additional LPS tanks -Additional Pressurant tank -Additional RACS tank	6	-New LPS feeding system design -MEA Delta Qualification -RACS Delta Qualification
AVUM proximity module	Additional GNC and Avionics	OBC	COTS	Low
		CAM	COTS	Low
		MFU	COTS	Low
		OBB-A	COTS	Low
		LIDAR	COTS	Low
		GPS Antenna (x2)	COTS	Low
		LNA Antenna GPS	COTS	Low
		GPS Receiver	COTS	Low
		IRS	COTS	Low
		Power conditioning	COTS	Low
		Solar arrays	COTS	Body mounted
		Dedicated ACS	COTS	For Close RDV and Grabbing
		Dedicated FPS	2	New development, but simplified wrt LV FPS

ADR by Vega Status of the activities

The study allowed to

Assess the feasibility of an ADR by adaption of Vega Upper Stage

- •Define the System level conceptual design of the spacecraft
 - including all sub-systems for two capture scenarios
 - Net/Tether grabbing
 - Tentacles/Arm grabbing
- •Trade-off several mission profiles
- •Demonstrate the feasibility of de-orbit scenario
 - By means of representative models for both options:
 - Flexible: Net/Tether
 - Rigid: Tentacles/Arm

•Assess programmatic, risk and cost aspects of the identified mission options

No major show-stopper arose on the adaption of Vega system for ADR service

AVUM + PRE can offer a flexible platform to carry a PM and its GD close to a Target Debris

And eventually de-orbit the whole stack by its powerful MEA.

Thank you!

AO-13780 Active Debris Removal by Vega U/S adaptation

WS, 06/05/2014

ELV System Team

ELV S.p.A. Proprietary Information – subject to the restrict ions on the cover or first page