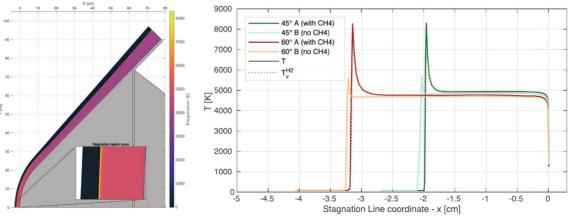

A Reinvestigation of the C₂ Deslandresd'Azambuja Transition

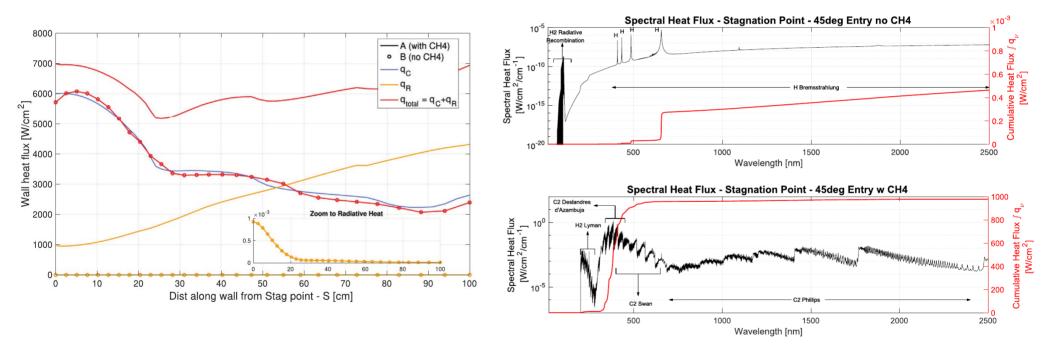
M. Lino da Silva

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Universidade de Lisboa

Space Ballistics, Lisbon, Portugal



Scope


- Park (J. Spaceraft Rockets 2011, J. Thermophysics Heat Transf. 2012, J. Spaceraft Rockets 2014) postulated that minor concentrations of CH₄ in Neptune atmosphere would enhance radiative heating through radiation from atomic C and molecular CH
- Coelho (Adv. Space Res. 2023) performed updated CFRD calculations with Ray-Tracing techniques for radiative transfer, accounting for all possible radiative species (with additional accounting of C₂ radiation)
 - Coelho's predicted radiative heating same order of magnitude than convective heating, if the 1.5% CH4 in Neptune (NeptuneGRAM 2004) accounted for, even for lower entry speeds (~18km/s)
 - Previous simulations and testing, pre- and post-Galileo showed that pure H₂/He flows are essentially radiationless for velocities below 27km/s.

10th Radiation of High Enthalpy Gases in Atmospheric Entry Workshop, Oxford, 9-12th Sep. 2024

Ray-Tracing results for Radiative Heating (Coelho 2023)

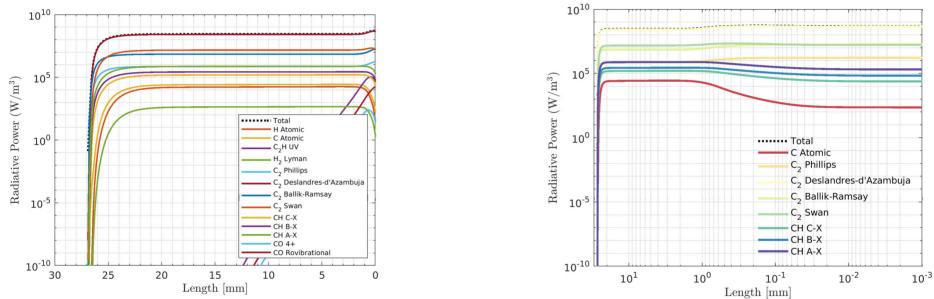
ipfn

INSTITUTO DE PLASMAS E FUSÃO NUCLEAR

Scope (ctd.)

- TRP activity sponsored by ESA ensued (2023-2024), led by IRS, testing on Plasma wind-tunnels (PWK1, Stuttgart) and Shock-Tubes (T6, Oxford). In parallel, some shots with the addition of CH₄ to H₂/He flows carried out at EAST.
 - Significant radiation by CH and C₂ species observed experimentally, after being predicted theoretically/numerically.

Ε ΕΠΟΛΟ ΝΠΙΟΙΕΛ


Scope (ctd.)

- Ice Giant Sensors activity includes numerical modeling
 - FGE provides CFD flowfields including ablation for Uranus and Neptune Entries
 - Space Ballistics providing radiative transfer calculations for a Galileo-type shape (discussed Thursday in another presentation)
- Simulation results confirmed previous Coelho results
 - Predominance of radiation from the C₂ Deslandres-d'Azambuja radiative system
 - C_2 Swan contributes as a far second

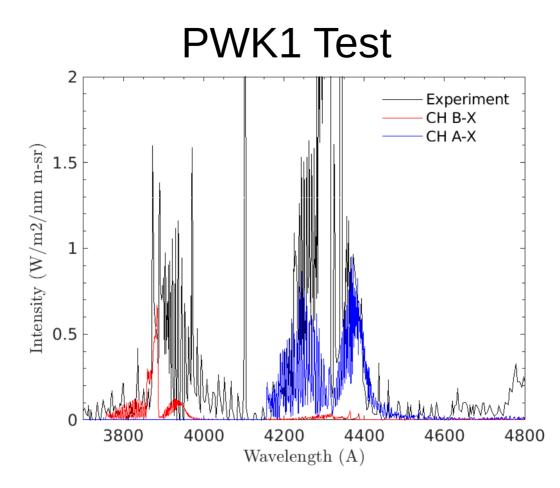
Contribution of C₂ Deslandres-d'Azambuja to Irradiance

- Neptune A0 point, high-pressure, thermal equilibrium, chemistry in quasi-steady-state
- The radiative species that mostly contribute to the total Irradiance are C2 Deslandres d'Azambuja and C2 Swan (more than an order of magnitude less

The Question:

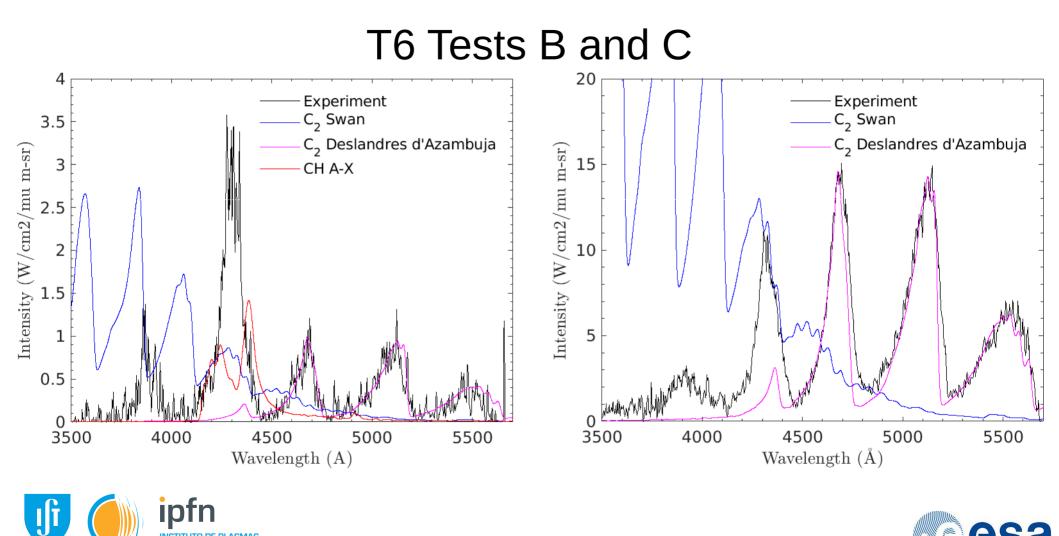
- The C2 Swan is quite ubiquitous in plasma applications, radiating in a multitude of carboncontaining plasmas (e.g. Lino da Silva 2004, Ph.D. Thesis)
- In comparison, the C₂ Deslandres-d'Azambuja radiative system is mostly absent
- So can the radiative database be trusted when it is predicting that C₂ Deslandres-d'Azambuja is a dominant radiative system?
- Plus, the C₂ Deslandres-d'Azambuja is a relatively obscure radiative system, lacking contemporary studies
 - "A high resolution study of the Deslandres–d'Azambuja bands for ¹²C₂ is overdue." (McKemmish et al, 2020, An update to the MARVEL data set and ExoMol line list for ¹²C₂)

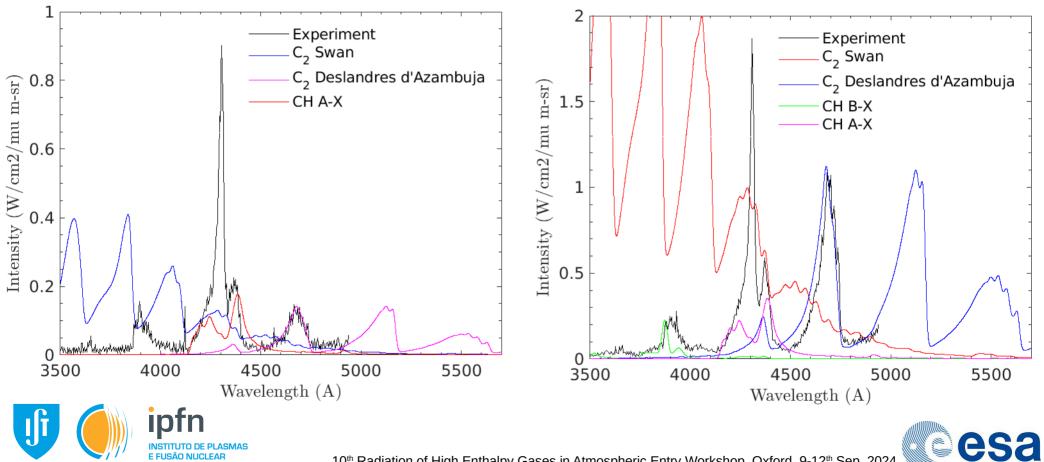
...Lets numerically rebuild the available experimental data.

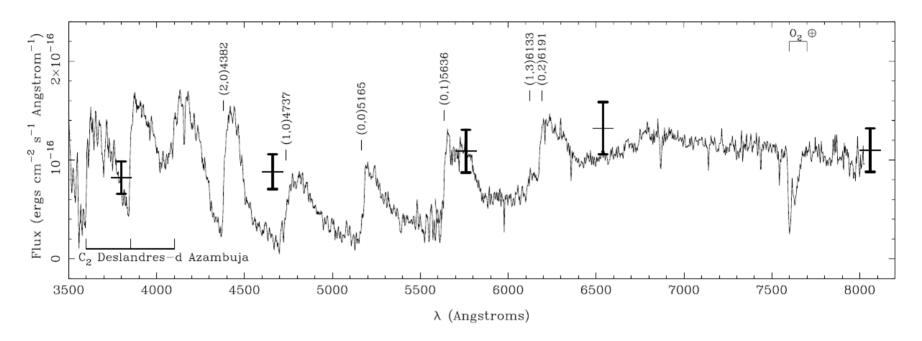


Available data

- PWK1 plasma wind-tunnel data
- EAST Shock-Tube Test suite 67 data
- T6 A, B, C test points
- Absorption Spectra from White Dwarf Stars






E FUSÃO NUCLEAF

EAST Tests 67-9 and 67-16

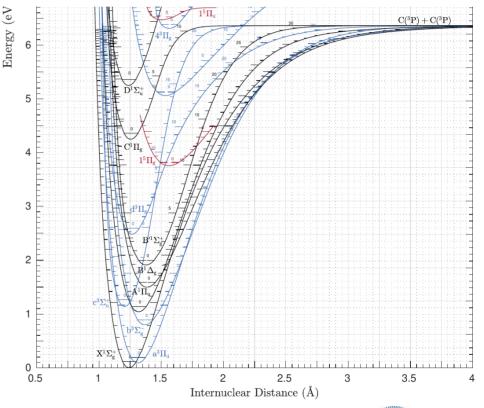
Carbon-Rich White Dwarf Star Spectra

• Very interesting spectrum (absorption of Blackbody radiation at T=5000K by the star photosphere allows identifying the C2 Deslandres d'Azambuja system, not yet simulated due to lack of time.

Simulation Results

- C₂ Swan bands always absent
- CH A-X and B-X prominent on PWK1, observable on low-CH₄ concentration shots in EAST and T6
- C₂ Deslandres d'Azambuja bands prominent on all shock-tube tests

	PWK1	Т6 В	T6 C	EAST 67-9	EAST 67-16
%CH4	1.5	0.5	5	0.4	0.4
p_inf (Pa)	N/A	12.8	13	13.3	66.5
v_inf (km/s)	N/A	16.4	16.3	16.3	19.24
Tr	5000	8500	8500	8500	8500
Τν	5000	9500	9500	9500	9500
n_C2	0	3.00E+17	4.50E+18	4.50E+16	3.50E+17
n_CH	5.00E+18	8.00E+17	5.00E+18	1.00E+17	2.00E+17


Reinvestigating the radiative database

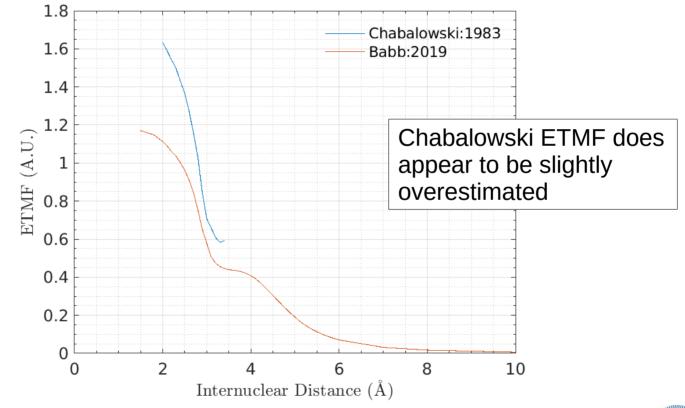
A look at the Potential curves of C2

- C2(C) and C2(d) formed by recombination
 - $C+C+M \rightarrow C2+M$
 - $C+C \rightarrow C2+h\nu$
- C2(C) is higher so it should be more easily populated (the less ΔE the better...)

Old and New theoretical studies

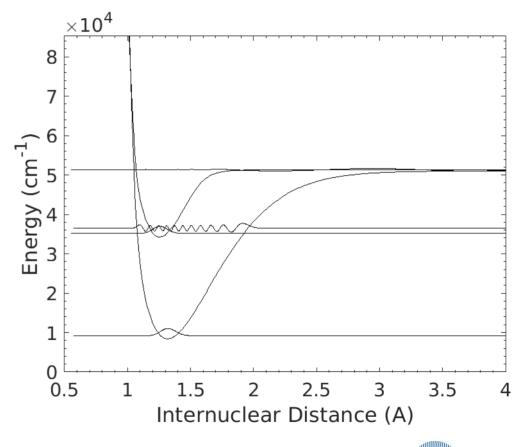
- Einstein coefficients for the C₂ Deslandres d'Azambuja system based on Chabalowski:1983 ETMF, which verified his results against limited shock-tube experiments from Cooper:1979
 - His results slightly overestimated the data from cooper
- Babb, Astropys. J. Studied theoretically the radiative recombination of C₂
 - − C+C → C2+hν
- Proposes rates of population for the two systems...
- ...and has contemporary calculations for a new ETMF for the C₂ Deslandres d'Azambuja system

	-
Table	3


Comparisons between theoretical and experimental transition properties

Transition	ν ₀₀ (eV)	$\Delta E_e(eV)^{n}$	f00
$b^{3}\Sigma_{g}^{-}-a^{3}\Pi_{\mu}$	0 703	0 737	0 00123
Ballik-Ramsay	(0 698) ^{b)}	0 683	(0 00118) °)
•		(0 798)	
$D^1\Sigma_u^+ - X^1\Sigma_g^+$	S 502	5 511	0 0544
Mulliken	(5.359)	5 504	(0 055±0 006) ^d)
		(5 361)	(0 0171) ^{c)}
С ¹ П ₈ –А ¹ П _и	3 391	3 325	0 0401
Deslandres-	(3 220)	3.388	(0 0267) ^c)
d'Azambuja		(3 207)	
$A^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$	1 009	1 009	0 0027
Phillips	(1 025)	1 026	(0 0025±0 0002) °
•		(1 040)	(0 00394) ^{< }}
40			(0.0023 ± 0.0003) ^r
10 ⁻¹⁶ F			(0 0015) ()
Fr	- – Semiclassical (Andreazza & Singh, 1997)		(0 00141) ^{B)}
	— Sum (present)	C ₂ -	
	— C-A		
	— d-a		
~ <u></u> ~	$-1^{5}\Pi_{g}-1^{5}\Pi_{u}$		
rate coefficient (cm ³ s ⁻¹)	e -	-	
Ŧ			
i lic			
Jee		-	
8			
ate			
22			
10 ⁻¹⁸	1000	10000	
	temperature T (Kelv		
		,	autilitius

Transition Moments Comparison



New Einstein Coefficients

 Used the new ETMF and reconstructed potential curves wavefunctions to get newer Av'v" coeffs.

•
$$R_e^{v'v''} = \int \psi_{v'}(r) R_e(r) \psi_{v''}(r) dr$$

• $A_{v'v''} = \frac{64\pi^4 \overline{\nu}^3 (2 - \delta_{0,\Lambda'+\Lambda''})}{3hc^3 (2 - \delta_{0,\Lambda'})} \left(R_e^{v'v''} \right)^2$

• Numerical calculations from the RKR_SCH routine of the SPARK Line-by-Line code

Chabalowski vs. New Einstein coeffs.

Spontaneous emission probabilities $A_{1,1}$ (in s⁻¹) for the Deslandres-d Azambuja band system n' υ" 0 2 3 4 5 7 I 6 200 + 7106 + 7418 + 6138 + 6408 - 5111 - 5 275 ± 4 634 + 30 173+7 3.27 ± 6 690+6 498+6 231~6 874-5 289-5 553-4 1 218+61.92 + 7 493 ± 5 349 ± 6 424 + 6252 - 67 114 - 6 432 ± 5 543 + 4254 + 6188 + 7245 + 5164 - 6 333 ± 6 225 - 6З 120 - 64 321 + 4 5.40 ± 5 108 + 6171 + 7639+5 682 - 5 284 + 6 168 ± 6 9.18 ± 3 169 + 6480 + 4122 + 75 147 + 4 177 ± 6 144+5 293 ± 6 1.25 ± 5 168 + 6314 - 6347 + 2460 + 4404 - 6 248 ± 6 3.77 - 36 τ(υ') (ns) 27 28 33 33

1.711E+7	8.536E+6	2.612E+6	6.400E+5	1.385E+5	2.777E+4	5.343E+3	1.034E+3	2.141E+2	5.106E+1	1.453E+1
1.242E+7	2.599E+6	7.423E+6	4.413E+6	1.631E+6	4.781E+5	1.228E+5	2.948E+4	6.984E+3	1.730E+3	4.727E+2
3.229E+6	1.328E+7	2.416E+4	3.946E+6	4.641E+6	2.499E+6	9.615E+5	3.088E+5	9.018E+4	2.556E+4	7.431E+3
3.542E+5	6.784E+6	9.732E+6	1.699E+6	1.219E+6	3.688E+6	2.903E+6	1.444E+6	5.705E+5	1.994E+5	6.633E+4
1.246E+4	1.078E+6	9.369E+6	5.636E+6	3.802E+6	6.626E+4	2.275E+6	2.760E+6	1.766E+6	8.477E+5	3.507E+5
3.070E-1	4.261E+4	1.997E+6	1.070E+7	2.698E+6	4.826E+6	1.992E+5	1.024E+6	2.191E+6	1.821E+6	1.052E+6
3.306E+1	2.804E+2	6.633E+4	2.778E+6	1.112E+7	1.226E+6	4.656E+6	8.738E+5	2.873E+5	1.469E+6	1.614E+6
2.252E+0	4.798E+2	6.121E+3	3.273E+4	2.962E+6	1.122E+7	7.930E+5	3.823E+6	1.453E+6	3.072E+4	8.684E+5
4.845E-1	1.207E+1	2.353E+3	4.035E+4	8.746E+3	2.223E+6	1.129E+7	1.121E+6	2.700E+6	1.722E+6	1.296E+2
5.062E-1	3.323E+0	1.107E+2	1.251E+3	9.645E+4	3.235E+5	6.517E+5	1.025E+7	2.574E+6	1.378E+6	1.815E+6
3.538E-4	4.425E+0	5.334E+1	2.315E+3	7.740E+3	3.874E+4	1.030E+6	2.404E+5	5.318E+6	4.812E+6	2.287E+5

Table 7

Conclusions

- There is now better confidence on the importance of the C₂ Deslandres d'Azambuja and the correctness of the radiative database (authors opinion)
- The reasons why we sometimes observe emission from the C2 Swan system and other times from the C₂ Deslandres d'Azambuja system remain mysterious
 - Great topic of study for plasma chemistry/state-to-state/collisional radiative modelling
 - C₂ Deslandres d'Azambuja is also the dominant system in equilibrium, highpressure conditions

