Multi-Paradigm Modelling (MPM) a "Most Appropriate" Talk

Hans Vangheluwe

The fourth Model Based Space Systems and Software Engineering workshop (MBSE 2023) on reducing the gap between model-based systems engineering and domain-specific model-based approaches.

ESTEC, Noordwijk, The Netherlands. 16 November 2023. Satellite of ADCSS2023.

MODEL EVERYTHING!

04/04	Bellairs, Barbados	02/14 Bellairs, Barbados
04/05	Bellairs, Barbados	09/14 Valencia, Spain
04/06	Bellairs, Barbados	01/15 Bellairs, Barbados
10/06	Genoa, Italy	09/15 Ottawa, Canada
04/07	Bellairs, Barbados	04/16 Bellairs, Barbados
10/07	Nashville, TN, USA	03/17 Bellairs, Barbados
04/08	Bellairs, Barbados	05/18 Bellairs, Barbados
04/09	Bellairs, Barbados	04/19 Bellairs, Barbados
10/09	Denver, CO, USA	09/19 Munich, Germany
04/10	Bellairs, Barbados	10/20 Montreal, Canada*
10/10	Oslo, Norway	10/21 Fukuoka, Japan*
04/11	Bellairs, Barbados	04/22 Bellairs, Barbados
10/11	Wellington, NZ	10/22 Montreal, Canada
04/12	Bellairs, Barbados	03/23 Carghjese, Corsica
10/12	Innsbruck, Austria	05/23 Bellairs, Barbados
05/13	Bellairs, Barbados	10/23 Västerås, Sweden
09/13	Miami, FL, USA	*virtual event

http://CAMPaM.MPM4CPS.eu

Context: Engineering of CPS

Truly complex, engineered systems, known as **Cyber Physical Systems (CPS)**, are becoming increasingly common. CPS emerge from the **networking** of multi-**physical** (mechanical, electrical, hydraulic, biochemical,).) and **computational** (control, signal processing, logical inference, planning, ...) processes, often interacting with a highly uncertain **environment**, including **human** actors, in a **socio-economic context**.

Allgemeine Modelltheorie

1973

"Model" Features

mapping feature	A model is based on an original. ⁴
reduction feature	A model only reflects a (relevant) se- lection of an original's properties.
pragmatic feature	A model needs to be usable in place of an original with respect to some pur- pose.

System under Study (SuS) vs. Appropriate Model

A Valid Model is an Appropriate Model

purpose: substitutability (engineering), explainability (science)

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

A Resistor Model's Validity Range

W. Oberkampf, C. Roy. Verification and Validation in Scientific Computing. Cambridge University Press, 2010.

Inferred Concrete (In)Validity Frame

Johan Cederbladh, Loek Cleophas, Eduard Kamburjan, Lucas Lima and Hans Vangheluwe. Symbolic Reasoning for Early Decision-Making in Model-Based Systems Engineering. In the 1st Workshop on Model-based Systems Engineering, MoDELS 2023.

Concrete Validity Frame

must be modelled, managed, extended, evolved, re-used, ...

Experiments (architecture and worklow):

Repeatable **Replicable** Reproducible

Validity vs. Accuracy vs. Fidelity ...

Most Appropriate Abstractions

Different abstractions (same or different formalisms)

×

• For performance (scale-ability) • For insight

Proceedings of the 2019 Winter Simulation Conference N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

TOWARDS ADAPTIVE ABSTRACTION IN AGENT BASED SIMULATION

Romain Franceschini

University of Corsica Pasquale Paoli UMR CNRS 6134 Campus Grimaldi Corte, 20250, FRANCE

Simon Van Mierlo Hans Vangheluwe

Department of Mathematics and Computer Science University of Antwerp - Flanders Make Middelheimlaan 1 Antwerp, 2020, BELGIUM

high performance

low performance

properties P

Most Appropriate Notations

Communication Theory

The "Physics" of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering

Daniel L. Moody, Member, IEEE

Semantic Transparency: semantically perverse symbols

"Physics" of Notations

ActivityType

ShithyType ActivityType ------

100,000

100,000

The sector

Most Appropriate Formalisms

syntax and semantics

Paulo Carreira · Vasco Amaral · Hans Vangheluwe *Editors*

Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

Springer Open

8 AADL: A Language to Specify the Architecture of Cyber-Physical Systems

Fig. 8.5: Comparison of well-known ADLs in terms of intended use and domains (reproduced from [3])

Carreira P., Amaral V., Vangheluwe H. (eds) Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer.

https://doi.org/10.1007/978-3-030-43946-0_2

DS(V)M Environment

WEST: modelling biological wastewater treatment.

Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe and Peter A.Vanrolleghem. Journal of Hydroinformatics 5 (2003) 27-50

http://www.mikebydhi.com/products/west

Most Appropriate Formalism

Metrics?

Can be Multi-Step/Multi-Formalism

most appropriate level of **deployment**

Model-Based System Design

XIL: X = Model, Software, Processor, Hardware

vertical consistency!

Ken Vanherpen. A contract-based approach for multi-viewpoint consistency in the concurrent design of cyber-physical systems. PhD thesis University of Antwerp. 2018.

kinds of models that always belong together

"ProMoBox"

Designing Requirements/Property Languages

B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. ProMoBox: A Framework for Generating Domain-Specic Property Languages. In Software Language Engineering (SLE), Vasteras, Sweden, LNCS vol. 8706, pp. 1- 20. Springer. September 2014.
Designing Requirements/Property Languages

B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe, and M. Wimmer. ProMoBox: A Framework for Generating Domain-Specic Property Languages. In Software Language Engineering (SLE), Vasteras, Sweden, LNCS vol. 8706, pp. 1- 20. Springer. September 2014.

Designing DS Requirements/Property Languages

B. Meyers, H. Vangheluwe, J. Denil and R. Salay, "A Framework for Temporal Verification Support in Domain-Specific Modelling," in IEEE Transactions on Software Engineering. doi:10.1109/TSE.2018.2859946

Most Appropriate **Combination** of Formalisms:

architectures

Components in Different Formalisms

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Controller, using Statechart(StateFlow) formalism

Mechanics subsystem

Formalism Transformation Graph (FTG)

Bran Selić: "fragmentation problem"

Formalism Transformation Graph (FTG)

Caveat: proving semantics/property preservation of a single transformation (denoted by a blue arrow) may take at least one PhD thesis!

state trajectory data (observation frame)

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In European Simulation Symposium (ESS) , pages 168 – 172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

state trajectory data (observation frame)

FMU₁ FMU₂ **FMU**N Model Model Model . . . Solver Solver Solver 9 Q Master

FUNCTIONAL MOCK•UP NTERFACE

> Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. Co-simulation: A survey. ACM Computing Surveys (CSUR), 51(3):49:1-49:33, 2018.

co-simulation

Most appropriate Views

Wireless Home Entertainment System

Multiple (consistent !) Views (in \neq Formalisms)

E. Guerra, P. Diaz and J. de Lara, A formal approach to the generation of visual language environments supporting multiple views. 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05), Dallas, TX, USA, 2005, pp. 284-286, doi: 10.1109/VLHCC.2005.6.

View: Events Diagram

View: Protocol Statechart

Model consistency as a heuristic for eventual correctness

Istvan David ^{a,*}, Hans Vangheluwe ^{b,c}, Eugene Syriani ^a

consistency across domains

Appropriate (and explicitly modelled) Workflow

Deployment/Design-Space Exploration

ECU_Passagier ___Task0 ____XTF ____Xunn_DRE_OCH ____Task_ims ____XTF ____XTT ____Xunn_TF_Bediening ____Xunn_TF_Bediening ____Xunn_TF_Logio ECU_Bestuurder ____Task_ims ____XTF

_____ Runn_TE_Bediening

0

____ POUR

bus

COH

time in ms

FTG+PM (Process Model)

ne

28 different modelling formalisms

50 transformations

FTG+PM: An Integrated Framework for Investigating Model Transformation Chains, Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. Proceedings of the System Design Languages Forum (SDL) 2013, Montreal, Quebec. Lecture Notes in Computer Science (LNCS), Volume 7916, pp 182-202, 2013.

Line Following Robot (for Twinning research)

_							
	Draw	Kal	man	P	red	icti	on
A				•			

Design Iterations

Initial Version

(Bang-Bang Controller with Centered Sensor)

"fixed" Version

(Bang-Bang Controller with Offset Sensor)

"working" Version

(Tuned PID Controller with Offset Sensor)

Meta-Models(MM)Formalism Transformation Graph(FTG)Process Model(PM)Process Trace(PT)Storage, Services, Real-World Artifacts(S/S/RWA)

MM+FTG+PM+PT+S/S/RWA aka FTG+PM++

R. Paredis, J. Exelmans and H. Vangheluwe.

Multi-Paradigm Modelling For Model Based Systems Engineering: Extending The FTG + PM. 2022 Annual Modeling and Simulation Conference (ANNSIM), San Diego, CA, USA, 2022, pp. 461-474, doi: 10.23919/ANNSIM55834.2022.9859391.

Process Model

Formalism Transformation (R) Graph

Formalism Transformation (R) Graph

Activity Contracts

Process Model

Process Trace

Adapters (Storage, Services, Real-World Artifacts)

Adapters (Storage, Services, Real-World Artifacts)

https://intercax.com/products/syndeia/

https://openflexo.org/

Types of Traceability (enabled by "model management")

- Traceability linking experiment and system
- Traceability across artifact versions (and process model)
- Traceability based on properties of interest
- Traceability between artifacts on different levels of detail
- Traceability between instances and types
- Fine-grained traceability between artifact elements

Joachim Denil

Show Chat send screenshare invitation send modelshare invitation