
Applicability of Fuzz Testing to Space
Software

A-Prof. Fabrizio Pastore
University of Luxembourg
fabrizio.pastore@uni.lu

ADCSS 2023 - November 15th, 2023

EXPRO / TEC-Standardisation
07/2022 – 07/2023

2

SnT Centre – University of Luxembourg
Who we are

P
E

O
P

L
E

480+
Workforce

70+
Nationalities

40%
Alumni who stay
in Luxembourg

P
A

R
T

N
E

R
S

H
IP

S
 &

 I
N

N
O

V
A

T
IO

N

50%
Doctoral
Candidates on
Industrial Projects

+65
Partners

8M
Partners annual
contribution in Euros

5
Spin-offs

3

Software Validation and Verification Group – www.SVV.lu

Requirements
Quality Assurance

Design-time
Verification

Testing & Analysis

Run-time Verification

Managing and Evolving Large Sets
of NL Requirements

Regulatory Compliance

Simulation of CPS Models

Schedulability Analysis

Model-Based and Regression
Testing

Functional Safety of AI-based
systems

Monitoring and Trace Checking

Specification Languages

Security Analysis and Testing

Log Analysis & Anomaly
Detection

• Established in 2012
• Headed by Prof. Lionel Briand
• 24 members

• 3 faculty members
• 2 research scientists
• 9 research associates
• 7 PhD candidates
• 3 research engineers

Research Topics

Applicability of Fuzz Testing to Space
Software

A-Prof. Fabrizio Pastore
University of Luxembourg
fabrizio.pastore@uni.lu

ADCSS 2023 - November 15th, 2023

EXPRO / TEC-Standardisation
07/2022 – 07/2023

Software
has a prominent role

in Space Systems

Software failures have critical impact

How
space software is

verified and validated?

Software testing is prevalent in V&V

Word cloud for
ECSS-Q-ST-80C standard

Software testing
is expensive:

can we automate it?

12

Different Fuzzing Techniques

Inputs structure and
constraints

• model-based
(grammar-based)
approaches

• model-less approaches

Test target

• Whole-program

• API functions

Internal program structure

• black-box approaches
• ignore internal structure

• greybox approaches
• rely on data that is easy

to collect and process
(e.g., code coverage)

• whitebox approaches
• reason about the code

semantics
(e.g., symbolic
execution)

13

Grey-box Fuzzing: An Evolutionary Testing Approach

SUT

SUT

New behaviour observed?
(number of times branches are covered)

Seed
files Queue

Test and collect
coverage

Select from
queue

Modify
file

.

.

Test

Crash

SUT

SUT

Crashing inputs

Yes:
add to queue

No: discard

The grey-box fuzzing process
demonstrated useful

to generate diverse inputs
that

expose different faults

Fuzzed files

or Sanitizer Failures
(memory leaks, out-of-

bound read, …)

Can we rely on fuzzing
to automate functional

testing?

15

Proposed Methodology: System-level Functional Testing

Seed input
0101110100111001
0101110100111001
0101110100111001

Fuzzer

Fuzzed input
0101110100111001
1101110100111001
0101010100111001

3: Repeated

SUT
configuration

2: Engineers compile with
instrumentation enabled

Code
coverage

SUT

Diverse
Inputs

1: Engineers provide

Outputs

4: Engineers
compare
outputs with
specifications

5: Automated
comparison for
regression testing

SUT

New SUT
Version Outputs

Crashing
inputs

SnT
Coverage
Toolset

Inputs Increasing
Coverage

Automated
system-level testing would

be beneficial,
but we should maximize
coverage with unit test

cases, first

Can we rely on fuzzing
to generate unit test

cases?

18

Proposed Methodology: Unit-level Functional Testing
Seed input
0101110100111001
0101110100111001
0101110100111001

Fuzzer

Fuzzed input
0101110100111001
1101110100111001
0101010100111001

3: Repeated

__function(
double x,
double y,
int i)

double x

double y

int i

Test Driver

Code coverage

3:Generate

2: Generate

SUT

SnT
Test Driver
Generator

1: Process

Diverse
Inputs

SnT
Coverage
Toolset

Inputs
Increasing
Coverage

SnT
Postprocessing

Tool

Unit
Test
Cases

19

20

Proposed Methodology: Unit-level Functional Testing
Seed input
0101110100111001
0101110100111001
0101110100111001

Fuzzer

Fuzzed input
0101110100111001
1101110100111001
0101010100111001

3: Repeated

__function(
double x,
double y,
int i)

double x

double y

int i

Test Driver

Code coverage

3:Generate

2: Generate

SUT

SnT
Test Driver
Generator

1: Process

Diverse
Inputs

SnT
Coverage
Toolset

Inputs
Increasing
Coverage

SnT
Postprocessing

Tool

Unit
Test
Cases

Crashing
inputs

Is it feasible?

22

Feasibility study

 RQ1: Can fuzzing automate functional testing at unit- and system-level?
 RQ2: How do fuzzing options contribute to fuzzing results?
 RQ3: How do different fuzzers compare for functional testing?
 RQ4: How does fuzzing perform for code sanitization purposes?

Focus on coverage and crash detection
for flight and ground segment

Subjects

24

Subjects: Unit Testing (1)

Fuzzer

Seed files
Generated
Input files

UtilLib

Test driver
invoking API

Coverage Crashes Sanitizer issues

Commercial
Utility
Library

25

Subjects: Unit Testing (2)

ASN1CC
Valid
grammar

Crashes

Sanitizer issues

Fuzzer
Seed files

Generated
Input files

Encoder/
Decoder

ASN1Lib Coverage

ASN1Lib
 Data serialization

and deserialization

26

Subjects: System Testing (1)

WhiteDwarf
 Data

compression tool
for CCSDS
compression
algorithms used
in ESA missions
(e.g., CSSDS
121.0-B-1, 122.0-
B-1 and 123.0-B-
1)

Fuzzer

Provided valid
input files

Generated
Input files

WhiteDwarf
configuration

DWARF
compress

Compressed
files

DWARF
decompress

Decompressed
files

Coverage
Sanitizer issues

Crashes

Fuzzer

Provided valid input files
(compressed by
WhiteDwarf)

Generated
Input files

27

Subjects: System Testing (2)

Micropython
Cross Compiler
for Leon Fuzzer

Valid .py Fuzzed .py

MuPy
cross

compiler
(MLC)

.mpy

Coverage Sanitizer issues

Crashes

Experiment Design

29

Experiments table

 RQ1: Can fuzzing automate functional testing at unit- and system-level?
 RQ2: How do fuzzing options contribute to fuzzing results?
 RQ3: How do different fuzzers compare for functional testing?
 RQ4: How does fuzzing perform for code sanitization purposes?

30

Metrics

 Function Line/Branch Coverage (FLC/FBC):
 Percentage of executable lines/branches covered, belonging to functions reached during

testing
 Avoid sides effect due to functions not reachable because of specific SUT configurations
 For unit testing, focus on the functions under test:

 FLC/FBC matches the line/branch coverage for the functions for which we generated a
test driver (i.e., the targets of our testing process)

 Cumulative number of crashes
 Natural
 Or triggered by sanitizers

Results

32

RQ1: Can fuzzing automate functional testing at unit- and system-level?

 Fuzzing enables
reaching high FLC for
unit testing

 Fuzzing is effective for
system-level testing of
software that
processes binary data.

 For software that
processes text files,
grammar-based fuzzers
should be used.

UtilLib

WhiteDwarf

Micropython

ASN1Lib

Fuzzing for Unit Testing Fuzzing for System Testing

33

RQ2: How do fuzzing options contribute to fuzzing results?

 CTX: takes calling context into consideration
 an input that

exercises branch 1, when function f is invoked by function
g,
differs from

an input that exercises branch 1, when function f is
invoked by function h

 NGRAM2: consider edge pairs to achieve path coverage
 four inputs, respectively exercising:

 branch1 and branch 4
 branch2 and branch 4
 branch1 and branch 3
 branch2 and branch 3

 are considered diverse

 LAF: split expressions into branches
 replaces “if (x >= 0)”
 with “if (x > 0 or x == 0)”

int f(int x){
if (x < 0){

x=-x;
}
if (x > 100){

….
}
return x;

}
void g(…){
 …
 f(y);
}
void h(…){
 …
 f(y);
}

branch1

branch2

branch3

branch4

34

RQ2: How do fuzzing options contribute to fuzzing results?

AFL++ AFL++ LAF AFL++ CTX AFL++ NGRAM2

W
hi

te
Dw

ar
f

AS
N

1L
ib

 For system-level, CTX and NGRAM
lead to high coverage quicker

 For unit-level, LAF increases
effectiveness (+5 percentage points
wrt default AFL++)

Fuzzing for System Testing

Fuzzing for Unit Testing

35

RQ3: How do different fuzzers compare for functional testing?

AFL++ AFL++ LAF HonggFuzz

LibFuzzerSymCC
 AFL++ with LAF is

the best for unit
testing

 HongFuzz is the
best for system
testing

AFL++ NGRAM

HonggFuzz

Fuzzing for Unit Testing Fuzzing for System Testing

36

RQ4: How does fuzzing perform for code sanitization purposes?
(Systel-level)

AFL++ with LSAN

 Tested sanitizers:
 ASAN. Address SANitizer. It detects memory

corruption vulnerabilities like use-after-free, NULL
pointer dereference, and buffer overruns.

 UBSAN. Undefined Behavior SANitizer.
 MSAN. Memory Sanitizer. It reports uninitialized

memory.
 TSAN. Thread Sanitizer. It discovers thread race

conditions.
 CFISAN. Control Flow Integrity SANitizer.
 LSAN. Leak SANitizer. It reports memory leaks in a

program.

 LSAN has identified errors in in the allocation of
memory for WhiteDwarf

 Feasibility results:
 Demonstrated that fuzzing is applicable to space software and

effective not only for robustness testing
but also to achieve very high coverage in unit testing

 The fuzzer options LAF and NGRAM/CTX should be used for unit
and system-level testing, respectively

 AFL++ with LAF performs best for unit,
Honggfuzz for system-testing

 Fuzzing demonstrated effective for leak detection

 Future work:
 Finalize a unit testing tool leveraging

fuzzers
 Assess grammar-based fuzzing tools

for standard interfaces (e.g., TC/TM)
 Integrate strategies to prioritize the

inspection of outputs
 Facilitate regression testing at

system-level

Applicability of Fuzz Testing to Space
Software

A-Prof. Fabrizio Pastore
University of Luxembourg
fabrizio.pastore@uni.lu

ADCSS 2023 - November 15th, 2023

EXPRO / TEC-Standardisation
07/2022 – 07/2023

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

