EXPRO / TEC-Standardisation
07/2022 - 07/2023

Applicability of Fuzz Testmg to Space

Software
A-Prof. Fabrizio Pastore- ' a
University of Luxembourg i o
fabrizio.pastore@uni.lu =
ADCSS 2023 - November 15t, 2023 Qi esa S n-l:

q——

2

Who we are

SnT Centre — University of Luxembourg

PEOPLE

88
884
RARRAK

480+

Workforce

70+

Nationalities

40%
Alumni who stay
in Luxembourg

=z
o
|
<
>
o
=z
=z
o3
n
o
I
n
(14
w
=z
|
(14
<
o

7™

iv'

50%
Doctoral
Candidates on

Industrial Projects

+65

Partners

8M

Partners annual
contribution in Euros

Software Validation and Verification Group — www.SVV.lu

Managing and Evolving Large Sets
of NL Requirements

 Established in 2012 Regulatory Compliance

. . . Requirements
Headed by Prof. Lionel Briand el e

.

24 OrngrfTa](E)j’[Z/SmemberS Schedulability Analysis
2 research scientists
9 research associates
7 PhD candidates Functionalfii;eetrz]sf Al-based
3 research engineers .

Des!g.n-tl.me Model-Based and Regression
Verification Testing

Testing & Analysis Security Analysis and Testing

Monitoring and Trace Checking

Run-time Verification Specification Languages
|U Log Analysis & Anomaly

software verification & validation D ete Ct | O n

EXPRO / TEC-Standardisation
07/2022 - 07/2023

Applicability of Fuzz Testmg to Space

Software
A-Prof. Fabrizio Pastore- ' a
University of Luxembourg i o
fabrizio.pastore@uni.lu =
ADCSS 2023 - November 15t, 2023 Qi esa S n-l:

q——

Software
has a prominent role
In Space Systems

@W World Africa Americas Asia Australia China Europe India Middle East United Kingdom

The Explosion of the Ariane 5 ETECH

wy/N § ENE=l [| =¥ | Beyond Earth

On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its lift-off from Kourou, French
Guiana. The rocket was on its first voyage, after a decade of development costing $7 billion. The destroyed
rocket and its cargo were valued at $500 million. A board of inquiry investigated the causes of the explosion
and in two weeks issued a report. It turned out that the cause of the failure was a software error in the inertial
reference system. Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket
with respect to the platform was converted to a 16 bit signed integer. The number was larger than 32,767, the
largest integer storeable in a 16 bit signed integer, and thus the conversion failed.

Computing Phones Security Gaming

A technical glitch led to Israeli spacecraft crash,

NASA: DOS Glitch Nearly Kill @mPanvsavs
Rove r @ ® Updated 0227 GMT (1027 HKT) April 13, 2019

The following paragraphs are extracted from the report of the Inquiry Board. An interesting article on the By Mark Hachman on August 23, 2004 at 7:07 pm
accident and its implications by James Gleick appeared in The New York Times Magazine of 1 December 1996. The CNN article reporting the explosion, from
hich the hi taken, is al ilable. .
which the above graphics were taken, is also available STANFORD, CALIF. — A software glitch that paralyzed the Mars '
On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40 seconds after initiation of the flight sequence, at an altitude of year was caused by an unanticipated characteristic of a DOS file
about 3700 m, the launcher veered off its flight path, broke up and exploded. said Monday.
The failure of the Ariane 501 was caused by the complete loss of guidance and altitude information 37 seconds after start of the main engine ignition sequence
(30 seconds after lift-off). This loss of information was due to specification and design errors in the software of the inertial reference system. The flaw, since fixed, was only discovered after days of agonizin

: P g » P
The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit signed integer value. The floating complicated by the limited “windows” of communication allowec

point number which was converted had a value greater than what could be represented by a 16-bit signed integer. said Robert Denise, a member of the Flight Software Developme

*SRI stands for Systéme de Référence Inertielle or Inertial Reference System. Propulsion Laboratory.

sci-tech™ space™ story page nature @he mu’g l]ington 1‘Jﬂ§t

COMPUTING Democracy Dies in Darkness

Metric mish 4 . Software Error Doomed Japanese
e etric mishap caused loss o PN
s NASA orbiter Hitomi Spacecraft

TECHNOLOGY

Military Satellite in Wrong Orbit

Space agency declares the astronomy satellite a loss By William Harwood
May 1, 1999

HEALTH September 30, 1999 - »
ENTERTAINMENT Web posted at: 4:21 p.m. EDT (2021 GMT) . . . R .
7BOOKS By Alexandra Witze, Nature magazine on April 29, 2016 A $433 million Air Force rocket mysteriously misfired a half-hour after launch today, putting an $800
TRAVEL million military communications satellite into a useless orbit.
FOOD In this story:
ARTS & STYLE It was the third failure in three straight flights of the Lockheed Martin Titan IV rocket system and if the
%H v:;:isc system used by NASA for many. Milstar 2 satellite cannot be salvaged -- an option that does not immediately appear likely -- losses over
ANALYSIS) the past nine months would total nearly $3 billion.
myCNN Error points to nation's conversion lag

In light of the previous malfunctions, today's devastating $1.2 billion failure raised fresh questions abot

RELATED STORIES, SITES v
Headline News brief the reliability of the nation's premier military launcher. The unmanned rocket system was developed in
news quiz

daily almanac

NASA's Climate Orbiter was lost
September 23, 1999

large part to give the Air Force "assured access to space” in the wake of the 1986 Challenger space shutt

armdent

How
space software Is
verified and validated?

Software testing is prevalent in V&

maintenance

[-:cl'lware nnal %ls lie:t\l‘l
-t noncunormance w--- "'

Word cloud for
ECSS-Q-ST-80C standard

Software testing
IS expensive:
can we automate it?

e 3IO \JUL:UIILy LJIUU

The latest news and insights from Google on security and safety on the Internet

@ O 8 https://www.securityweek.com/google-brings-ai-magic-to-fuzz-test B % | Q Search © L @ &) =

Malware & Threats - Security Operations v Security Architecture ~ Risk Management v CISO Strategy ¥ ICS/OT - Funding/M&A -

Android Goes All-in on Fuzzing APPLICATION SECURITY

August 29,2023 Google Brings Al Magic to Fuzz Testing With Eye-Opening
StCURITY

CYBERSECURITY NEWS. INSIGHTS & ANALYSIS

Malware & Threats ~ Security Operations - Security Architecture - Risk Management - CISO Strategy ¥ ICS/OT v Funding/M&A - 7 testing infrastructure and finds immediate success with code coverage.

VULNERABILITIES

Google Shells Out $600,000 for 0SS-Fuzz Project
Integrations

Google announces an expansion of its 0SS-Fuzz rewards program to help find software vulnerabilities before they are exploited.

By lonut Arghire
-

February 2, 2023
4 vary

Mozilla Gets Fuzzy: New Tools Help Hackers Test Firefox
Security

OUJRSP PROJECTS CHAPTERS EVENTS ABOUT Q Member Login
®

Fuzzing

Fuzz testing or Fuzzing is a Black Box software testing technique, which basically consists in finding
implementation bugs using malformed/semi-malformed data injection in an automated fashion.
|

& C O 8 nttps://www.fuzzingbook.org ¢ Q Search

A trivial example

Let’s consider an integer in a prograr
the user picks one, the choice will be

or 255 ? We can, because integers a The FuZZIHQ BOOk

implemented securely, the program n Tools and Techniques for Generating Software Tests

= The Fuzzing Book v i= About this Book v) Resources v ®, Share v © Help v

by Andreas Zeller, Rahul Gopinath, Marcel Béhme, Gordon Fraser, and Christian Holler

overflows, DoS, ...

Fuzzing is the art of automatic bug fir About this Book

them if pOSSible. Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of effort. This book addresses this problem
automating software testing, specifically by generating tests automatically. Recent years have seen the development of novel techni
to dramatic improvements in test generation and software testing. They now are mature enough to be assembled in a book - even v

H |St0 ry executable code.
Fuzz testing was developed at the Ui from bookutils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")
students. Their (continued) work can
H : ae (Generating sortware |ests L
towards command-line and Ul fuzzin JaCeneialingSe ’

simple fuzzing.

-

12

Different Fuzzing Techniques

Inputs structure and lest target
constraints .
* model-based .
(grammar-based)
approaches

 model-less approaches

Whole-program
API functions

Internal program structure

* Dblack-box approaches
 ignore internal structure

e greybox approaches

* rely on data that is easy
to collect and process
(e.g., code coverage)

* whitebox approaches

e reason about the code
semantics
(e.g., symbolic
execution)

uni.ln | SOT

13

Grey-box Fuzzing: An Evolutionary Testing Approach

Fuzzed files

Seed
files

-

Test and collect
coverage

Select from
Queue queue

(-0t

Modif
file

Yes:
add to queue

/

V\D—> SUT e

New behaviour observed?
(number of times branches are covered)

e

Test

.

Crashing inputs

or Sanitizer Failures
(memory leaks, out-of-

bound read, ...)

The grey-box fuzzing process
demonstrated useful
to generate diverse inputs

1 No: discard

that

expose different faults

Can we rely on fuzzing
to automate functional
testing?

Proposed Methodology: System-level Functional Testing

1: Engineers provide . o 5: Automated
2: Engineers compile with comparison for

‘SUT ‘ \ instrumentation enabled regression testing
configuration

------ P ==
Seed input " 3: Repeated ! Code) Output:ﬂ

0101110100111001 I coverage l
0101110100111001 Fuzzer 2 |

0101110100111001

Fuzzed input

|

|

I :
I 4: Engineers
| 0101110100111001

|

|

\

1101110100111001 compare
0101010100111001 outputs with
Inputs Increasing specifications

Crashing : SnT -

) Diverse Outputs

inputs Inputs Coverage - » | 1T
l ' Toolset ' '

Coverage

Automated

system-level testing would
be beneficial,

but we should maximize
coverage with unit test
cases, first

Can we rely on fuzzing
to generate unit test
cases?

Proposed Methodology: Unit-level Functional Testing

3:Generate
Seed input SnT

0101110100111001 Test Dri
0101110100111001 est vriver

0101110100111001 Generator

> 5§ B B B N B B el N . . ni
Y Repeated Y ‘2 Generate 1: Process Unit
I I Test
: Fuzzer : Test Driver Cases
I 1| — double x SUT
! . function(-
| . - » double T

Fuzzed input V“ Senlie 5
: 0101110100111001 : N doubl ’ ,
I |1101110100111001 I OUDIE Y, |
I I Inputs
\)

- | (— Increasing '

Code coverage Coverage

Diverse SnT SnT
_H Inputs Coverage P Postprocessing #h
L Toolset L Tool -

input_data_pVal={0xFF,@0xFF,0xFF,0xFF};
input_data_pErrCode={0xFF, 0xFF,0xFF,@xFF};

expected_pVal={0xFF, 0xFF,@xFF, 0xFF};
expected_pErrCode={0xFF,0xFF,0xFF, 0xFF};
expected_return={0x00,0x00,0x00,0x00};

main(argc, *x argv){
T_POS pVal;
pErrCode;
_return;

memcopy (&pVal, input_data_pVal, pval));
memcopy (&pErrCode, input_data_pErrCode,

_return = T_P0S_IsConstraintValid(&pVal, &pErrCode);

printf_struct("pval (T_P0S)=", &pVal, pval));
printf("pErrCode (int) = %d\n", pErrCode);
printf("return (flag) = %d\n", _return);

assert(@==compare((*x)&pVal, (pval)));

assert(@==compare((*x)&pErrCode, (pErrCode)));
assert(@==comparel((*)& return, (_return)));
return @;

uni.ln | SAT

Proposed Methodology: Unit-level Functional Testing

- 3:Generate
Seed input SnT
0101110100111001 Test Dri
0101110100111001 est vriver
0101110100111001 Generator
—m o m———— -~ 2: Generate 1: Process Unit
{ 3:Repeated 1 ‘
I I Test
: Fuzzer : Test Driver Cases
I 1| — double x SUT
: -: »| doubl “ —function(]
. ubley
" Fuzzed input I double x,
[0101110100111001 I N I
I |1101110100111001 I double Yy, |
I I Inputs
' ! — Increasing

Code coverage

Coverage

Diverse SnT

Coverage Postprocessing &
_ Tool s

s It feasible?

Feasibility study
Focus on coverage and crash detection
for flight and ground segment

3:Generate

Seed input SnT
1: Engineers provide . . . 5: Automated 0101110100111001 .
2: Engineers compile with comparison for 010111010011 1001 Test Driver
suT ' instrumentation enabled regression testing 0101110100111001
configuration P veiirivy 2: Generate 1: Process Unit
(T Repet M coo - s Test
01 . j Code Outputs Fuzzer Test Driver Cases
0101111

e e L L L L,
A 2

1]

1]

Inputs

I 1
1 coverage 1
0100111001 Fuzzer g 1
1001 || 1
: = : . : Fuzzed input
| |Fuz=z ||'1|1|:1;10t1 I 4: Engineers 1 |ow01110100111001
| |oto1110100 compare 1 | 1010100111001
1 1101110100111001 1 P . 1 O R T 7 T
1 |o101010100111001 1 outputs with Y
‘t _________ Inputs Increasing gpeacifications
Crashing Di I
> verse Coverage - Outputs
inputs Inputs »
Toolset

RQ1: Can fuzzing automate functional testing at unit- and system-level?

RQ2: How do fuzzing options contribute to fuzzing results?

RQ3: How do different fuzzers compare for functional testing?

RQ4: How does fuzzing perform for code sanitization purposes? uni.ln | ST

Y J— Increasing ’
Code coverage Coverage
i n
essin

Subjects

Subjects: Unit Testing (1)

Coverage Crashes Sanitizer issues

Generated Test driver

Seed files Input files invoking API
Commercial
TR - LINE
Library

uni.lu | SIT

Subjects: Unit Testing (2)

Valid
ASN1 Lib grammar. » \ Sanitizer issues
= Data seria_liz_atio_n Generated Coachos
and deserialization Input f|Ies
ASN1Lib Coverage

uni.lu | SIT

Subjects: System Testing (1)

Coverage
Sanltlzer issues
Crashes
] Provided valid Generated
WhlteDwarf input ﬁleS |nput f||es
= Data o Compressed

compression tool
for CCSDS

. . files
' DWARF
f compress :

compression ‘ i

glgonthm_s u.sed whitewart |

in ESA missions configuration ,

(e.g., CSSDS Provided valid input files ' Decompressed
121.0-B-1, 122.0- (compressed by Generated : files

B-1and 123.0-B- "/eove Input files
1) -}\ \ |
; uni.lu | SIT

Subjects: System Testing (2)

Crashes
Coverage Sanitizer issues
- Valid .
Micropython > Fuzzed .py \ / mpy

Cross Compiler - MuPy
‘ P et 4 ? compller
for Leon ML)

uni.ln | ST

Experiment Design

Experiments table

Utility Lib |LibCSP ASN1CC WhiteDwarf |Micropython (STARE ROHC
Type of testing: Unit integration |Unit System System System integration
RQ |Fuzzer configurations
RQ1 |AFL+ DONE DONE DONE DONE DONE DONE DONE
RQ2 |AFL+LAF DONE DONE
RQ2 |AFL+ Ngram (3) DONE
RQ2 |AFL+ ContextSensitive DONE
RQ3 |AFL DONE
RQ3 |HoggFuzz DONE
RQ3 |LibFuzzer DONE
RQ3 |MOpt DONE
RQ3 |SymCCAFL++ DONE
RQ4 |AFL+ ASAN DONE
RQ4 |AFL++ MSAN DONE
RQ4 |AFL+ UBSAN DONE
RQ4 |AFL+TSAN DONE
RQ4 |AFL+LSAN DONE
= RQ1: Can fuzzing automate functional testing at unit- and system-level?
= RQ2: How do fuzzing options contribute to fuzzing results?
= RQ3: How do different fuzzers compare for functional testing?
|

RQ4: How does fuzzing perform for code sanitization purposes?

il

1T

30

Metrics

: Funchon Line/Branch Coverage (FLC/FBC):

Percentage of executable lines/branches covered, belonging to functions reached during
testing

= Avoid sides effect due to functions not reachable because of specific SUT configurations
= For unit testing, focus on the functions under test:

= FLC/FBC matches the line/branch coverage for the functions for which we generated a
test driver (i.e., the targets of our testing process)

= Cumulative number of crashes
= Natural
= QOrtriggered by sanitizers

uni.ln | SOT

Results

32

92.0 A

91.8

vg. FLC (%)

< 91.2 A

91.0 A

90.6 1

RQ1: Can fuzzing automate functional testing at unit- and system-level?

Fuzzing for Unit Testing

Avg. cumulative line coverage

91.4

ASN1Lib

T T T T T T T
200 400 600 800 1000 1200 1400
Execution time (minutes)

Avg. cumulative line coverage

95.25 A

95.00 A

©
»
N
a

FLC (%)

5, 94.50

Avg

94.25 A

94.00 A

e
[
¢

93.751 @

R FY Y TR XXX DRI A

UtilLib

0

200 400 600 800 1000 1200 1400
Execution time (minutes)

84

831

824

Avg. FLC (%)

79 4

78 1

77 4

Avg. FLC (%)
0 © © ©
) © o N

©
IS
L

Fuzzing for System Testing

Avg. cumulative line coverage

81 1

80

'
[]
[]

WhiteDwarf
0 200 400 600 800 1000 1200 1400

Execution time (minutes)

Avg. cumulative line coverage

000000000000 ° ° ° °
.
Micropython

0 100 200 300 400

Execution time (minutes)

= Fuzzing enables
reaching high FLC for
unit testing

» Fuzzing is effective for
system-level testing of
software that
processes binary data.

= For software that
processes text files,
grammar-based fuzzers
should be used.

uni.ln | SAT

33

RQ2: How do fuzzing options contribute to fuzzing results?

int f(int x){
if (x<0){
branch

= CTX: takes calling context into consideration

= an input that
exercises branch 1, when function f is invoked by function

X=-X;

of branch2| }
differs from if (x> 100){
an input that exercises branch 1, when function f is ——v branch3
invoked by function h orancha | ! t |
= NGRAM2: consider edge pairs to achieve path coverage : ST
= four inputs, respectively exercising: void g(...){
= pranch1 and branch 4
= branch2 and branch 4 fly);
= pranch1 and branch 3 }
= branch?2 and branch 3 void h(...){
= are considered diverse
. . . fly);
= LAF: split expressions into branches)

= replaces “if (x>=0)"
= with “if (x>0orx==0)"

uni.ln | SAT

34

Fuzzing for System Testing

WhiteDwarf

RQ2: How do fuzzing options contribute to fuzzing results?

84

83 A

82

X 811

Avg. FLC (%)

791

781

771

AFL++

Avg. cumulative line coverage

80 -

4
:

T
0

T T T T
800 1000 1200 1400
(minutes)

T T T
200 400 600
Execution time

Fuzzing for Unit Testing

ASN1Lib

92.0 1
91.8 1
91.6
Y 91.4
w
g
< 91.21
91.0 1

90.8 -

Avg. cumulative line coverage

90.61

0

T T T T
800 1000 1200 1400
(minutes)

T T T
200 400 600
Execution time

Avg. FLC (%)
~ ~ ©
[ee] o -

A :

~
3
L

Avg. FLC (%)
o o o o o o o
= N w o ~

©
o
L

AFL++ LAF

Avg. cumulative line coverage

©
o
L

K4

&
L

w
L

)
°
)
°
T T T T T T T T
0 200 400 600 800 1000 1200 1400
Execution time (minutes)
Avg. cumulative line coverage
e000000000000000000000

T
0

T T T T T T T
200 400 600 800 1000 1200 1400
Execution time (minutes)

Avg. FLC (%)

<)
—

=]
o
L

~
©o
L

N
oo
L

~
~
L

AFL++ CTX

Avg. cumulative line coverage

Avg. FLC (

T T T T T T T
200 400 600 800 1000 1200 1400
Execution time (minutes)

AFL++ NGRAM2

Avg. cumulative line coverage

XEXX) 841
83
82

= 814

80 -

79

78

77 A

r......................
[]

[]

[]

[]

0 200 400 600 800 1000 1200 1400

Execution time (minutes)

For system-level, CTX and NGRAM
lead to high coverage quicker

For unit-level, LAF increases
effectiveness (+5 percentage points

wrt default AFL++)

35

RQ3: How do different fuzzers compare for functional testing?

AFL++

Avg. cumulative line coverage

Fuzzing for Unit Testing

AFL++ LAF

Avg. cumulative line coverage

70 4 70 + ’.........oooooooooooooo
.
60 601 o
- 02000 OSIOSIOIEBITOSIBSILOIEBIOIEBNEBEDSNTPSDS
504 o 071 e
g 40 1 g 401 3
T [P
=3 o I=)
Z 30 Z 30 H
20 4 20 A
10 10
0 T T T T T T T T 0 T T T T T T T T
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Execution time (minutes) Execution time (minutes)
SymCC LibFuzzer
Avg. cumulative line coverage Avg. cumulative line coverage
70 4 70 4
60 60 -
50 4 50 -
D 0000 SOOI BSITOIOISIOPIOIEOEBPIOIEOERSEPSYTPEYDS
= - N N N N N N NN N NN NN NN
g g
9 40 Y 40
T T
=3 =3
Z 30 A Z 301
20 4 20 4
10 10
0 0

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Execution time (minutes)

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Execution time (minutes)

~
S
L

=
o

v
=}
L

&
=}
L

w
S
L

N
=}
L

=
o
L

o

HonggFuzz

Avg. cumulative line coverage

T T T T T T
400 600 800 1000 1200 1400
Execution time (minutes)

Fuzzing for System Testing

Avg. FLC (%)

AFL++ with LAF is
the best for unit
testing

HongFuzz is the
best for system
testing

Avg. FLC (%)

100

80 4

60

40 -

20 A

100

80 4

60

40

20 4

AFL++ NGRAM

Avg. cumulative line coverage

’.......................
]

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Execution time (minutes)

HonggFuzz

Avg. cumulative line coverage

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Execution time (minutes)

36

RQ4: How does fuzzing perform for code sanitization purposes?
(Systel-level)

250 A

200 A

Crashes avg.

50 A

AFL++ with LSAN

Avg. cumulative crashes (total = 85899)

150 ~

100 ~

0 200 400 600 800 1000 1200 1400
Execution time (minutes)

Tested sanitizers:

ASAN. Address SANitizer. It detects memory
corruption vulnerabilities like use-after-free, NULL
pointer dereference, and buffer overruns.
UBSAN. Undefined Behavior SANitizer.

MSAN. Memory Sanitizer. It reports uninitialized

memory.
TSAN. Thread Sanitizer. It discovers thread race

conditions.
CFISAN. Control Flow Integrity SANitizer.
LSAN. Leak SANitizer. It reports memory leaks in a

program.

LSAN has identified errors in in the allocation of
memory for WhiteDwarf

uni.ln | SAT

Proposed Methodology: System-level Functional Testing

5: Automated

Grey-box Fuzzing: An Evolutionary Testing Approach

1: Engineers provide

(5 Proposed Methodology: Unit-level Functional Testing

- 3:Generate
Seed input SnT s

comparison for
— —
configuration b
10111010011

or Sanitizer Failures

(memory leaks, out-of- 0101110100111001

0101110100111001 TeSt Drlver
i 0101110100111001 Generator
; 2: Generate 1: Process

The grey-box fuzzing process
demonstrated useful
to generate diverse inputs
that
expose different faults

SUT

Crashing __function(

. A ouble

inputs Fuzzed input double x,
0101110100111001
1101110100111001 doubleyy,

Increasing

Coverage
SnT

Coverage - 4 Postprocessing i

= Feasibility results: e
» Demonstrated that fuzzing is applicable to space software and ‘

effective not only for robustness testing ' :

but also to achieve very high coverage in unit testing ' A—
* The fuzzer options LAF and NGRAM/CTX should be used for unit .

and system-level testing, respectively ' R .
= AFL++ with LAF performs best for unit, .

Honggfuzz for system-testing : .
= Fuzzing demonstrated effective for leak detection ° " “'"I“

- - —

Proposed 10odology: System-level Functional Testing

1: Engineers provide i o 5: Automated
l 2: Engineers compile with comparison for

Grey-box Fuzzing: An Evolutionary Testing Approach

Fuzzed files
Seed Select from
files Queue queue / — I Crash —>
—_—

instrumentation enabled regression testing
configuration s
| 3o gl JaSE

(—- > ~

N New SUT

Seed input |} ‘

0101110100111001 .

0101110100111001

. SUT Crashing inputs

or Sanitizer Failures

Test and collect Modify : (memory leaks, out-of-
coverage file [— 4 y

bound read, ...) 0101110100111001 |

Fuzzed input 4: Engineers
0101110100111001
1101110100111001 compare

0101010100111001 outputs with
Inputs Increasing specifications
Coverage

Yes: Test
add to queue The grey-box fuzzing process
demonstrated useful
New behaviour observed? to generate diverse inputs
(number of times branches are covered) that
T

expose different faults
l No: discard

Crashing
inputs

= [Future work:

= Finalize a unit testing tool leveraging
fuzze IS Proposed Methodology: Unit-level Functional Testing

3:Generate
Seed input SnT

= Assess grammar-based fuzzing tools o101110100111001 Test Driver
for standard interfaces (e.g., TC/TM) = ol By
= Integrate strategies to prioritize the
iInspection of outputs
= Facilitate regression testing at ;
system-level "

1
4

-
3: Repeated

double x
__function(

Fuzzed input double x,
double vy,

0101110100111001
1101110100111001

———————————,

|
|
|
i
i
|
|
i
i
)

Coverage Postprocessing N7

_ Tool
LUXEMBOURG

EXPRO / TEC-Standardisation
07/2022 - 07/2023

Applicability of Fuzz Testmg to Space

Software
A-Prof. Fabrizio Pastore- ' a
University of Luxembourg i o
fabrizio.pastore@uni.lu =
ADCSS 2023 - November 15t, 2023 Qi esa S n-l:

q——

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

