
17th ESA Workshop on Avionics, Data, Control and

Software Systems, ESTEC, 15th November 2023

PLATO N-DPU ASW dual-core architecture

and the V&V approach followed

Philippe Plasson, philippe.plasson@obspm.fr

Contents

PLATO overview

Why a dual core architecture and
what type of architecture?

Problems to solve and technical
solutions developed for PLATO

Verification and validation approach

2

PLATO N-DPU ASW

dual-core architecture

and the V&V approach

followed

PLATO Overview

3

PLATO Mission

◼ PLATO = “PLAnetary Transits
and Oscillations of stars”

◼ Third medium-class mission of
the European Space Agency
Cosmic Vision programme.

◼ Main objective = to detect
terrestrial exoplanets in the
habitable zone of Sun-like
stars.

◼ Launch = end 2026.

PLATO Payload

◼ Ultra-high precision, long, uninterrupted
photometric monitoring in the visible of
very large samples of bright stars

◼ Multi-camera approach: set of 26 cameras
(2 gigapixels).

◼ Huge amount of data to process on-board:

– 14 TB of data are generated each day
by the 26 cameras

– Only 54 GB can be downloaded to the
ground

◼ From the start of the project, the question
of the computing power needed on board
was identified as critical.

PLATO On-board Data Processing System

4

◼ The PLATO Data

Processing System is the

sub-system of PLATO

payload in charge of the

on-board data

processing.

◼ 16 on-board computer

units connected via a

SpaceWire network:

– 12 Normal Data

Processing Units

embedding a dual-core

LEON3-FT processor

– 2 Fast Data processing

Units

– 2 Instrument Control Units

working in cold redundancy

PLATO N-DPU Application Software

5

◼ The N-DPU Application
Software is the embedded
software deployed in each of
the 12 N-DPU boards.

◼ Each software manages two
cameras by reading pixels
and housekeeping data from
the camera front-end
electronics.

◼ The software must process
up to 260000 stars every 25
seconds.
– For 20% of the processed

stars, the software produces
6x6-pixel windows.

– For 80% of the stars, the
software computes
photometry products (fluxes,
centers of brightness).

Contents

PLATO overview

Why a dual core architecture and
what type of architecture?

Problems to solve and technical
solutions developed for PLATO

Verification and validation approach

6

PLATO N-DPU ASW

dual-core architecture

and the V&V approach

followed

Why a dual-core architecture?

7

◼ The PLATO project was identified
from the beginning as a challenge
in terms of the data processing
resources needed on board.

◼ We carried out in-depth
assessment of the CPU budgets
from the early phases of the
project.

◼ CPU budgets established by
prototyping in C the photometry
algorithms and by measuring the
execution times on a LEON
processor simulator.

◼ For processing the data of one camera, the occupancy rate of a

LEON processor operating at 50 MHz has been estimated at around

40-50%.

◼ Constraints in terms of weight, size and power consumption led to

the decision that a DPU should manage 2 cameras.

◼ Solution adopted: 12 N-DPU with a LEON

dual-core processor running at 50 MHz

What type of multi-core architecture?

Approach Main features / Pros and Cons

AMP

(Asymmetric

Multi-Processing)

• Each core has its own OS and executes a separate set of tasks.

• Optimizes resource utilization and minimizes the need for inter-core

communication.

• Adds the overhead of multiple OS instances.

• Lack of an integrated process and tools to easily develop this type of

architecture.

SMP

(Symmetric

Multi-Processing)

• All cores share the same OS and communicate with each other via

shared memory.

• Provides a simpler programming model, but the execution model is

generally more complex.

• Rejected due to lack of a qualified RTOS supporting SMP (when the

study was done)

Hypervisor • Infrastructure for implementing time and space partitioning in a

multi-core system by virtualizing the physical resources, such as

processing cores, memory, and I/O devices.

• Rejected mainly because of a lack of expertise in this technology in

the team and a lack of time to acquire the necessary know-how.

8

Why the AMP approach?

◼ Compatible with the use of
qualified RTOS like RTEMS
4.8 by Edisoft.

◼ Very well adapted to the
PLATO needs with a sharing
between cores minimizing
the interferences.

◼ Compatible with the LESIA
technical heritage
(GERICOS platform)

◼ More predictable and
simpler execution model:
– Less inter-process

communication and
contention for shared
resources

– Easier to reason about the
schedulability of individual
tasks

9

CORE #1CORE #0

TC/TM

ICU

Data pool

N-DPU (GR712RC)

Data pool

Scrubber
PUS, HK,

modes

Data

processing

Data

processing

Acquisition Acquisition

Camera

#1

Camera

#2

RTEMS

4.8

RTEMS

4.8

Contents

PLATO overview

Why a dual core architecture and
what type of architecture?

Problems to solve and
technical solutions developed

for PLATO

Verification and validation approach

10

PLATO N-DPU ASW

dual-core architecture

and the V&V approach

followed

AMP approach: the main issues to solve

◼ AMP approach poses various technical implementation
problems, as well as software engineering problems.
– How do we make the applications running on each core

communicate and collaborate effectively?

– How do we manage the allocation of shared hardware resources
between applications?

– How do we describe the architecture of these applications?

– How do we unify the construction of the different applications that
run on each core into a single project?

– How do we analyse the real-time scheduling of these applications
and measure the final system performance?

◼ In the context of the PLATO N-DPU ASW development, a
technical answer has been provided to all those questions
by enriching the GERICOS platform.

11

GERICOS platform overview: the C++ framweork

12

GERICOS
platform

GERICOS::TOOLS
GERICOS C++
framework

• GERICOS C++ framework = lightweight, optimized and space

qualified C++ implementation of the active object paradigm on

top of a real-time kernel (e.g. RTEMS by Edisoft)
• A real-time application is built as a set of active objects.

• Each active object (a “task”) has its own message queue and

computational thread.

• Other concepts included in the GERICOS::CORE middleware:
• Synchronized objects, shared resources

• Circular buffers and FIFO

• Interrupt handlers

• GERICOS::BLOCKS: PUS, data pool, TC/TM, modes, etc.

Used in flight on the

RPW instrument

Support of AMP in GERICOS C++ framework

◼ Resources shared by several cores
– A new spin lock component has been

added to the GERICOS framework.

– With GERICOS, the shared resources are
defined thanks to a specific component
encapsulating a RTOS mutex and offering
lock and unlock operations.

– This GERICOS shared object component
has been extended with a spin lock so
that the resources, like FIFO, can be
shared between cores.

◼ Inter-core task communication
– A task, running on a first core, can send a

message to a remote task, running on a
second core, through the use of a proxy
and inter-core queues.

– On the second core, a system task is
responsible for polling all inter-core
queues and posting the messages
retrieved to the corresponding task
queues.

13

GERICOS platform overview: the toolbox

14

GERICOS
platform

GERICOS::TOOLS
GERICOS C++
framework

Set of tools for automatizing the

development process of

embedded S/W:
• GERICOS UML profile to describe

the static architecture of an

embedded application.

• C++ code generation

• Building chain

• …

Task

Timer

FIFO

Shared

object

Single

object

Support of AMP in GERICOS::TOOLS

15

◼ GERICOS UML profile

– The UML profile has been extended to allow

for the development of multi-core

applications, including the declaration of

inter-core shared objects and remote tasks.

◼ C++ code generation

– GERICOS::TOOLS can generate C++ code for

inter-core system tasks and proxy objects

representing locally a remote task.

◼ Automated management of memory

partitioning

– GERICOS::TOOLS automates the allocation

of inter-core shared memory, making it

easier to develop applications for AMP dual-

core architectures.

◼ AMP application building automation

– GERICOS::TOOLS provides an automated

software building process for AMP dual-core

architectures.

– This process automatically generates two

consistent executable images from one UML

model and one C++ project.

Contents

PLATO overview

Why a dual core architecture and
what type of architecture?

Problems to solve and technical
solutions developed for PLATO

Verification and validation approach

16

PLATO N-DPU ASW

dual-core architecture

and the V&V approach

followed

Verification and validation approach

◼ The N-DPU ASW has a real-time architecture made complex by the
number of real-time components but also by the interactions
between the 2 cores.

◼ A failure to conform to timing constraints can result in a loss of
science data and a degradation of the instrument performance.

17

Real time

components

CPU core#0

App

CPU core#1

App

Interrupts 3 1

Tasks
20

(1 inter-core)

8
(4 inter-core)

Timers 18 8

FIFO
15

(3 inter-core)

6
(3 inter-core)

Shared objects
11

(6 inter-core)

6
(6 inter-core)

Synchronization

objects
3

(1 inter-core)

2

Verification and validation approach

◼ What are the big challenges to verify and validate such a dual-core
software?

◼ Of all the activities involved in the validation and verification, those
most impacted by the dual-core AMP architecture are those linked to
technical budgeting and, in particular, scheduling analysis.

◼ The other activities like the tests or the code robustness analysis, are
clearly less impacted or not impacted at all.

18

Activities Impacts due to AMP dual core architecture?

Unit tests No (95% of the source code of core#1 app is also used by

core#0 app)

Integration tests Few (additional tests required for the inter-core mechanisms)

Validation tests No (black box testing, where the two applications are

considered as a single system)

Code reliability and robustness

analysis

No specific issues brought by the AMP architecture

Coding rules and metrics No specific issues brought by the AMP architecture

Technical budgets including

scheduling analysis

Strong. Scheduling analysis tricky to obtain because of the

multi-core architecture

Schedulability verification

◼ An AADL (Analysis and Design Architecture Language) model of the
PLATO N-DPU ASW has been designed with the collaboration of CNES
to describe all its dynamic properties:
– task periods

– WCETs and deadlines

– shared resource accesses

– synchronization mechanisms

– task precedence constraints

– …

◼ The goal was to propose a model using simplification hypothesis
– as little pessimistic as possible

– sufficiently representative to guarantee the schedulability analysis validity

◼ Modelling hypothesis have been proposed for caches, DMA burst
transfers and memory access slowdowns.

◼ The Cheddar Scheduling Analysis tool fed with the AADL model has
been used to obtain the schedulability proof.

19

Schedulability verification

◼ At SW-PDR level (2019), long before
the scientific algorithms were
implemented, the model has
proved, by static analysis and
simulation, that all the tasks, and in
particular the most critical ones,
theoretically cannot miss their
deadlines.

◼ Moreover, we were able to compute
CPU margins from the model.

◼ Since the model was significantly
pessimistic, due to hypothesis we
took, we were confident that real
CPU margins are above the one
computed from the model.

20

Cheddar timing analysis result

Schedulability verification

◼ At SW-CDR level (2022) and for the
ASW V1 delivery (2023), the
schedulability proof was confirmed
by direct measurements reported
by the flight software itself in its
housekeeping parameters
– thanks to a GERICOS feature allowing

to record in real-time the Worst Case
Response Times (WRT) of the various
tasks

– using a worst case test scenario
whose duration is significant

◼ The WRT of each task is compared
to the deadlines to check that no
violation occurs and to analyse the
margins.

21

WRT of each task

reported in HK TM

packets

Thank you / Questions ?

22

philippe.plasson@obspm.fr

mailto:philippe.plasson@obspm.fr

