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PLATO Overview
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PLATO Mission

◼ PLATO = “PLAnetary Transits 
and Oscillations of stars”

◼ Third medium-class mission of 
the European Space Agency 
Cosmic Vision programme.

◼ Main objective = to detect 
terrestrial exoplanets in the 
habitable zone of Sun-like 
stars.

◼ Launch = end 2026. 

PLATO Payload

◼ Ultra-high precision, long, uninterrupted 
photometric monitoring in the visible of 
very large samples of bright stars

◼ Multi-camera approach: set of 26 cameras 
(2 gigapixels).

◼ Huge amount of data to process on-board: 

– 14 TB of data are generated each day 
by the 26 cameras

– Only 54 GB can be downloaded to the 
ground

◼ From the start of the project, the question 
of the computing power needed on board 
was identified as critical.



PLATO On-board Data Processing System
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◼ The PLATO Data 

Processing System is the 

sub-system of PLATO 

payload in charge of the 

on-board data 

processing. 

◼ 16 on-board computer 

units connected via a 

SpaceWire network:

– 12 Normal Data     

Processing Units 

embedding a dual-core 

LEON3-FT processor

– 2 Fast Data processing     

Units

– 2 Instrument Control Units 

working in cold redundancy



PLATO N-DPU Application Software 
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◼ The N-DPU Application 
Software is the embedded 
software deployed in each of 
the 12 N-DPU boards. 

◼ Each software manages two 
cameras by reading pixels 
and housekeeping data from 
the camera front-end 
electronics.

◼ The software must process 
up to 260000 stars every 25 
seconds. 
– For 20% of the processed 

stars, the software produces 
6x6-pixel windows.

– For 80% of the stars, the 
software computes 
photometry products (fluxes, 
centers of brightness).
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Why a dual-core architecture?
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◼ The PLATO project was identified 
from the beginning as a challenge 
in terms of the data processing 
resources needed on board.

◼ We carried out in-depth 
assessment of the CPU budgets 
from the early phases of the 
project.

◼ CPU budgets established by 
prototyping in C the photometry 
algorithms and by measuring the 
execution times on a LEON 
processor simulator.

◼ For processing the data of one camera, the occupancy rate of a 

LEON processor operating at 50 MHz has been estimated at around 

40-50%.

◼ Constraints in terms of weight, size and power consumption led to 

the decision that a DPU should manage 2 cameras.

◼ Solution adopted: 12 N-DPU with a LEON 

dual-core processor running at 50 MHz



What type of multi-core architecture?

Approach Main features / Pros and Cons

AMP 

(Asymmetric 

Multi-Processing)

• Each core has its own OS and executes a separate set of tasks. 

• Optimizes resource utilization and minimizes the need for inter-core 

communication.

• Adds the overhead of multiple OS instances. 

• Lack of an integrated process and tools to easily develop this type of 

architecture.

SMP 

(Symmetric 

Multi-Processing)

• All cores share the same OS and communicate with each other via 

shared memory. 

• Provides a simpler programming model, but the execution model is 

generally more complex.

• Rejected due to lack of a qualified RTOS supporting SMP (when the 

study was done)

Hypervisor • Infrastructure for implementing time and space partitioning in a 

multi-core system by virtualizing the physical resources, such as 

processing cores, memory, and I/O devices.

• Rejected mainly because of a lack of expertise in this technology in 

the team and a lack of time to acquire the necessary know-how.
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Why the AMP approach?

◼ Compatible with the use of 
qualified RTOS like RTEMS 
4.8 by Edisoft. 

◼ Very well adapted to the 
PLATO needs with a sharing 
between cores minimizing 
the interferences.

◼ Compatible with the LESIA 
technical heritage 
(GERICOS platform)

◼ More predictable and 
simpler execution model:
– Less inter-process 

communication and 
contention for shared 
resources

– Easier to reason about the 
schedulability of individual 
tasks
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AMP approach: the main issues to solve

◼ AMP approach poses various technical implementation 
problems, as well as software engineering problems. 
– How do we make the applications running on each core 

communicate and collaborate effectively? 

– How do we manage the allocation of shared hardware resources 
between applications? 

– How do we describe the architecture of these applications? 

– How do we unify the construction of the different applications that 
run on each core into a single project? 

– How do we analyse the real-time scheduling of these applications 
and measure the final system performance?

◼ In the context of the PLATO N-DPU ASW development, a 
technical answer has been provided to all those questions 
by enriching the GERICOS platform. 
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GERICOS platform overview: the C++ framweork
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GERICOS 
platform

GERICOS::TOOLS
GERICOS C++ 
framework

• GERICOS C++ framework = lightweight, optimized and space 

qualified C++ implementation of the active object paradigm on 

top of a real-time kernel (e.g. RTEMS by Edisoft)
• A real-time application is built as a set of active objects.

• Each active object (a “task”) has its own message queue and 

computational thread. 

• Other concepts included in the GERICOS::CORE middleware: 
• Synchronized objects, shared resources

• Circular buffers and FIFO

• Interrupt handlers

• GERICOS::BLOCKS: PUS, data pool, TC/TM, modes, etc.

Used in flight on the 

RPW instrument



Support of AMP in GERICOS C++ framework

◼ Resources shared by several cores
– A new spin lock component has been 

added to the GERICOS framework.

– With GERICOS, the shared resources are 
defined thanks to a specific component 
encapsulating a RTOS mutex and offering 
lock and unlock operations.

– This GERICOS shared object component 
has been extended with a spin lock so 
that the resources, like FIFO, can be 
shared between cores.

◼ Inter-core task communication
– A task, running on a first core, can send a 

message to a remote task, running on a 
second core, through the use of a proxy 
and inter-core queues.

– On the second core, a system task is 
responsible for polling all inter-core 
queues and posting the messages 
retrieved  to the corresponding task 
queues.
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GERICOS platform overview: the toolbox
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GERICOS 
platform

GERICOS::TOOLS
GERICOS C++ 
framework

Set of tools for automatizing the 

development process of 

embedded S/W:
• GERICOS UML profile to describe 

the static architecture of an 

embedded application.

• C++ code generation

• Building chain

• …

Task

Timer

FIFO

Shared

object

Single

object



Support of AMP in GERICOS::TOOLS
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◼ GERICOS UML profile

– The UML profile has been extended to allow 

for the development of multi-core 

applications, including the declaration of 

inter-core shared objects and remote tasks.

◼ C++ code generation 

– GERICOS::TOOLS can generate C++ code for 

inter-core system tasks and proxy objects 

representing locally a remote task.

◼ Automated management of memory 

partitioning 

– GERICOS::TOOLS automates the allocation 

of inter-core shared memory, making it 

easier to develop applications for AMP dual-

core architectures.

◼ AMP application building automation

– GERICOS::TOOLS provides an automated 

software building process for AMP dual-core 

architectures. 

– This process automatically generates two 

consistent executable images from one UML 

model and one C++ project.
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Verification and validation approach

◼ The N-DPU ASW has a real-time architecture made complex by the 
number of real-time components but also by the interactions 
between the 2 cores.

◼ A failure to conform to timing constraints can result in a loss of 
science data and a degradation of the instrument performance.
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Verification and validation approach

◼ What are the big challenges to verify and validate such a dual-core 
software?

◼ Of all the activities involved in the validation and verification, those 
most impacted by the dual-core AMP architecture are those linked to 
technical budgeting and, in particular, scheduling analysis.

◼ The other activities like the tests or the code robustness analysis, are 
clearly less impacted or not impacted at all.
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Activities Impacts due to AMP dual core architecture?

Unit tests No (95% of the source code of core#1 app is also used by 

core#0 app) 

Integration tests Few (additional tests required for the inter-core mechanisms)

Validation tests No (black box testing, where the two applications are 

considered as a single system)

Code reliability and robustness 

analysis 

No specific issues brought by the AMP architecture

Coding rules and metrics No specific issues brought by the AMP architecture

Technical budgets including 

scheduling analysis

Strong. Scheduling analysis tricky to obtain because of the 

multi-core architecture



Schedulability verification

◼ An AADL (Analysis and Design Architecture Language) model of the 
PLATO N-DPU ASW has been designed with the collaboration of CNES 
to describe all its dynamic properties: 
– task periods

– WCETs and deadlines

– shared resource accesses 

– synchronization mechanisms

– task precedence constraints

– …

◼ The goal was to propose a model using simplification hypothesis 
– as little pessimistic as possible 

– sufficiently representative to guarantee the schedulability analysis validity 

◼ Modelling hypothesis have been proposed for caches, DMA burst 
transfers and memory access slowdowns. 

◼ The Cheddar Scheduling Analysis tool fed with the AADL model has 
been used to obtain the schedulability proof.
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Schedulability verification

◼ At SW-PDR level (2019), long before 
the scientific algorithms were 
implemented, the model has 
proved, by static analysis and 
simulation, that all the tasks, and in 
particular the most critical ones, 
theoretically cannot miss their 
deadlines. 

◼ Moreover, we were able to compute 
CPU margins from the model. 

◼ Since the model was significantly 
pessimistic, due to hypothesis we 
took, we were confident that real 
CPU margins are above the one 
computed from the model.
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Cheddar timing analysis result



Schedulability verification

◼ At SW-CDR level (2022) and for the 
ASW V1 delivery (2023), the 
schedulability proof was confirmed 
by direct measurements reported 
by the flight software itself in its 
housekeeping parameters
– thanks to a GERICOS feature allowing 

to record in real-time the Worst Case 
Response Times (WRT) of the various 
tasks

– using a worst case test scenario 
whose duration is significant

◼ The WRT of each task is compared 
to the deadlines to check that no 
violation occurs and to analyse the 
margins.
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Thank you / Questions ?

22

philippe.plasson@obspm.fr

mailto:philippe.plasson@obspm.fr

